SURFACE MODIFICATION FOR IMPROVED JOINING AND CORROSION RESISTANCE

Pacific Northwest National Laboratory:Vineet Joshi (co-PI), Kevin Simmons, Rajib Kalsar, Vish Viswanathan, Venky Prabhakaran, Alasdair Crawford Oak Ridge National Laboratory:Yong Chae Lim (co-PI), Donovan N. Leonard (co-PI),Amit Naskar, Jiheon (Jay) Jun, Michael P. Brady, David Hoskins, Nihal Kanbargi Argonne National Laboratory: Dileep Singh

Presenter: Yong Chae Lim

DOE-VTO AMR

Project ID # MAT225

Pacific Northwest

This presentation does not contain any proprietary, confidential, or otherwise restricted material

Timeline

- Start: *Oct 2021
- End: Sept 2023
- 10% Complete

Budget

- Project Funding \$3.225 M (3 years)
- ▶ FY 2021: \$1.075M
 - ORNL: \$475K
 - PNNL: \$550K
 - ANL: \$50K

* Funding Received Jan 2021

Barriers

- Multi-Materials Systems: Engineered Surfaces (corrosion)
- Multi-Materials Systems: Predictive Modeling (corrosion)
- Multi-Materials Systems: High volume joining
- Lack of robust solutions to address materials incompatibilities when designing multi-materials vehicles
- Fundamental understanding and modeling tools for optimizing joining methods and interfaces for multimaterial components

*2017 U.S. DRIVE MTT Roadmap Report, (currently being updated)

Partners

- Pacific Northwest National Laboratory (PNNL)
- Oak Ridge National Laboratory (ORNL)
- Argonne National Laboratory (ANL)

RELEVANCE: AI-STEEL AND AI-CFRP JOINTS TO ACHIEVE VEHICLE LIGHT WEIGHTING NEED BETTER GALVANIC CORROSION RESISTANCE

Objective: High-Quality, Corrosion-Resistant Joints with 3x Longer Lifetime with Surface Modification Treatment vs. Baseline Joints with No Surface Modification Treatment

- Develop novel surface modification techniques to <u>optimize joint quality and adhesion</u>, and provide <u>electrical insulation</u> to improve galvanic corrosion resistance
- Systematically understand (processing)-(interface chemistry)-(joining-corrosion) relationships
 - The potential of the surface modification(s) to improve adhesion and mitigate galvanic corrosion
 - The impact of these surface-modified phases on electric insulation, bulk corrosion resistance, joint quality, and mechanical behavior

Corrosion mitigation (general and galvanic corrosion) in the joints of dissimilar materials is a key technical challenge that must be overcome to successfully integrate candidate lightweight autobody structures from AI alloys, carbon-fiber reinforced polymer (CFRP) composites, and steels

OVERALL APPROACH: SURFACE MODIFICATION-JOINING-CORROSION PERFORMANCE

•

Assessment

Task 3.0: Bulk Substrate and Macro-Galvanic Corrosion

(SECCM) for Micro-Galvanic & Interface Assessment

Task 4.0: Scanning Electrochemical Cell Microscopy

Task 5.0: Modeling of Joint Corrosion Behavior

Selected materials

- AI 5052-H32, 5083, 6061-T6, 6063, 7075, A356(cast)
- PPA and PA66 carbon fiber composites
- Galvanized DP590 and 980

SURFACE MODIFICATION-JOINING STRATEGIES: ATTEMPT ELECTRIC INSULATION BY GROWTH OF OXIDES ON AL OR USE OF ADHESIVES

Can the joining accommodate submicron oxide layers to reduce galvanic coupling?

Sational Laboratory Argonne

National Laboratory

Pacific Northwest

- Successfully demonstrated pre-formed surface coating rivet improved galvanic corrosion resistance for Mg-CFRP by friction self-piercing riveting process from Joining Core Program (JCP) Phase I
- Collaboration with other thrusts in Joining Core Program Phase 2: MAT222, MAT223, MAT224

Quarter	Milestone/Deliverable Name/Description	End Date
Q1	Complete baseline evaluation of general corrosion properties for monolithic (not joined) as-received materials (AI, steel, and/or CFRP) electrochemical testing	Month 3
Q2	 Develop a method for characterization of adhesive-CFRP and adhesive-AI (or galvanized steel) interfaces and interphase formation by microscopy 	Month 6
	 Utilize the corrosion model to provide a baseline corrosion potential without the surface treatment techniques in dissimilar joints 	
Q3	Evaluate and characterize electrochemical properties before and after laser and atmosphere plasma treatment at least one AI alloy type at the flat coupon level	Month 9
Q4	 Complete electrochemical resistance and corrosion properties assessment for laser and/or AP treated oxide surfaces of at least one AI alloy type 	Month 12
	 Demonstrate at the coupon level the surface energy and bonding improvements after the air plasma treatment on CFRP composite 	
Go/No- Go	 Document determination of targeted achievement of electrochemical resistance and/or corrosion properties at least 3x better than the baseline untreated AI surface 	9/30/2021
decision	 Perform lap shear tests to demonstrate a 20% increase in surface energy and an 10% increase in lap shear strength on CFRP composite with surface modification 	
	ABORATORY ALLABORATORY ARGONNE ALLABORATORY	

ACCOMPLISHMENTS: ATMOS. PLASMA TREATMENT OF AL ALLOYS (AA) AND DUAL PHASE (DP) 590 TO ENHANCE ADHESIVE BONDING

- I50W air plasma torch: all four metal substrates increase in surface energy with the slowest speed
- Increases in surface energy from exposed surfaces may be attributed to increased amounts of hydrated components (characterization in progress)
- Most of the epoxies are rich in hydroxyl groups and can provide better bonding characteristics with a hydroxyl-rich surface
- Higher traversing speeds reduce surface energy indicated by lower polar component

AK **RIDGE**

National Laboratory

Pacific Northwest

Argonne

ACCOMPLISHMENTS: INITIAL LASER SURFACE PROCESSING OF 7075 AL SHOWED ENHANCED CORROSION RESISTANCE IN 3.5 WT.% NACL

ACCOMPLISHMENTS: ESTABLISHING BASELINE TO UNDERSTAND THE **RIVET-SHEET GALVANIC INTERACTIONS VIA COMSOL MODELING**

Cathode

Cathode

Anode

7075 Rivet material with different top sheet aluminum alloys were modeled

> AA6063 as a top sheet has greatest corrosion current when coupled with 7075 rivet and will lead to the corrosion of the rivet

COLLABORATION AND COORDINATION

- Teams meet and virtually present monthly
- The exact same batches of materials are being used by all teams at each lab across the JCP
- Oak Ridge National Laboratory Team:
 - Materials Joining, Deposition Science & Technology, Corrosion Science & Technology, and Carbon & Composites Groups
- Pacific Northwest National Laboratory:
 - Solid Phase Processing- Joining, Materials Performance, Electrochemical Sciences Groups
- Argonne National Laboratory: X-ray, synchrotron beam characterization of surfaces
- Tri-national lab team formed to support joining, characterization, corrosion, and modeling tasks
- Periodic interactions with other thrusts within JCP with close coordination/ ties to automotive industry
- L&L Products: provide adhesives

PROPOSED FUTURE WORK

- Evaluate laser and atmosphere plasma processes to controllably form insulating submicron oxide/ceramic surfaces on AI to increase corrosion resistance and reduce AI-steel joint galvanic coupling
 - Can such surfaces still be joined? Do they appreciably impact corrosion resistance?
- Evaluate atmosphere plasma processes to enhance adhesive bonding
 - AI-CFRP: joint quality and reduced galvanic coupling
 - Al-steel: joint quality and reduced galvanic coupling
- Collaboration with other thrusts in Joining Core Program Phase 2 to explore multiple joining processes
- Characterization
 - Surface/cross-section (x-ray photoelectron spectroscopy, electron microscopy, x-ray diffraction, radiography, tomography)
 - Extensive bulk and local electrochemical evaluation of bulk and joined materials
- Model and validate the effect of deformation, gaps, adhesives, surface treatment and crevice on the corrosion behavior of multi-material joints OAK RIDGE Argonne A *Any proposed future work is subject to change based on funding levels

- Identified and procured selected materials (AI alloys, CFRP, and steel) in collaboration with other thrusts in the joining core program phase 2 to ensure consistent, comparable findings
- Atmosphere plasma surface treatment on AI and steel metal surface increased surface energy compared with the untreated material to enhance adhesive bonding performance
- Initial laser surface treatment on AA7075 improved the corrosion resistance and electrochemical resistance compared with the untreated material
- COMSOL modeling of sheet/rivet interaction impacts on galvanic coupling initiated to guide materials surface modification and joining strategies

TECHNICAL BACKUP SLIDES

TECHNICAL BACK-UP: IMPEDANCE DATA FITTING EXAMPLES

Zview (Scribner INC.) was used for computer-assisted impedance spectra fitting of all electrochemical impedance spectroscopy (EIS) data. Some examples of impedance fitting (as snapshots) are shown below.

ACCOMPLISHMENT: LASER SURFACE PROCESSING ON AL ALLOYS

- Advantage of laser process
 - Non-contact
 - High precision, selective area, less distortion, environment friendly
 - Applicable to complex, three-dimensional geometry by robot or CNC motion stages
 - Amenable to Scale up
- Laser Process parameters
 - Laser power, pulse repletion rate, pulse duration, wavelength
 - Focusing optic/ beam shaping
 - Scan speed
 - Shielding gas (e.g., oxygen, nitrogen): forms Al₂O₃ or AlN
 - Improve adhesive bonding strength
- Improve corrosion resistance of material and joint

TECHNICAL BACK-UP: EIS DATA SUMMARY & POST-EXPOSURE SURFACE IMAGES

Post-corrosion surface of 7075 after EIS + anodic polarization + anodic constant potential

Pacific Northwest

A7075 (2"x2" & I"xI" coupons) EIS results

Pitting but no visible substrate dissolution

Pitting but no visible substrate dissolution