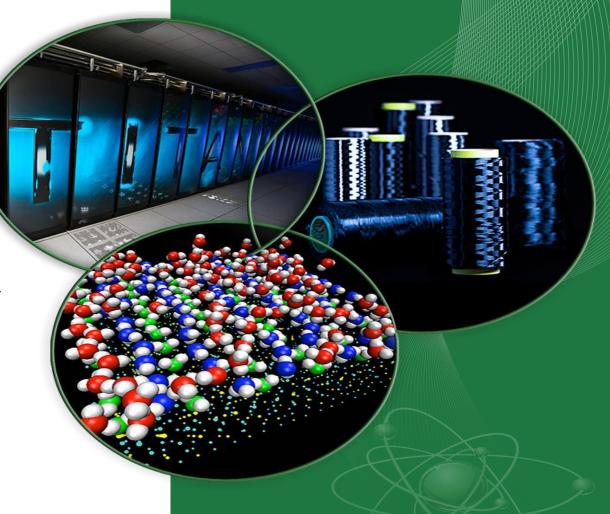
High Temperature Carbonization (HTC)


Mat196

PI: Felix Paulauskas
Oak Ridge National Laboratory

Partner: 4X Technologies, LLC. Pol Grappe

June 22, 2021,12:00 PM

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

Project Start: 11/17/20*

Project End: 9/30/22

Progress: 20%

Budget

Overall budget:

• FY21 – FY11: \$3.5M

Detail:

FY21: \$2.0M

• FY22: \$1.5M

Barriers

- Barriers addressed
 - Cost: A goal of this project is to reduce energy consumption in the carbon fiber conversion process and therefore total carbon fiber cost.
 - Inadequate supply base: Another goal of this project is to reduce the required processing time for carbonization and therefore increase overall throughput.

2017 U.S. DRIVE MTT Roadmap Report, section 4

Partners

Project lead: ORNL

Partner: 4X Technologies

(formerly RMX Technologies)

^{*} Due to internal delays

Relevance

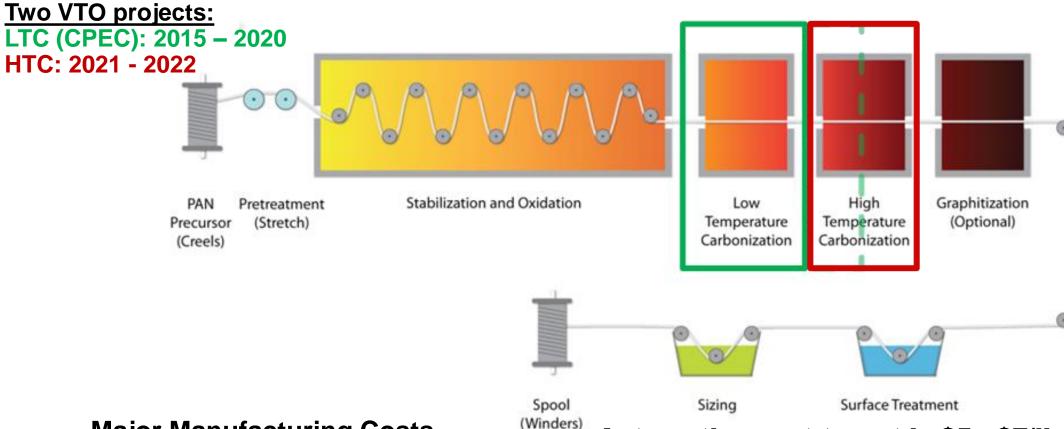
Project title:

High Temperature Carbonization (HTC):

- Relies on dielectric heating
- Faster and more efficient that conventional
- At atmospheric pressure

Project Goals:

- Reduce unit energy consumption of HTC stage (kWh/kg) by ca. 20% (ca. 5% of the cost reduction on the carbon fiber (CF) overall manufacturing process)
- Produce equal or better quality carbon fiber
- Scale the technology to a nameplate capacity up to one annual metric ton by project end date


Milestones

Date	Milestone FY2021	Status
Dec. 30, 2020	M1: Data and design Evaluation between two applicator configurations. Down selection of one of them to go to HTC.	Completed: Feb. 26, 2021
March 30, 2021	M2: design with CEM modeling completed. Beginning of procurement.	Not completed
June 30, 2021	M3: Commissioning of HTC. Stable operation (15min).	N/A
Sept. 30, 2021	M4 (Go/No-Go): CF production (1.6g/cc, 300 ksi tensile strength, and 25 Msi modulus).	N/A

Date	Milestone FY2022	Status
Dec. 30, 2021	M5: Process 4 tows of 24k filaments ea. CF production (Density = 1.7 g/cc, tensile strength = 400ksi, modulus = 25Msi, residence time = 200s)	N/A
March 30, 2022	M6: Process 4 tows of 24k filaments ea. CF production (Density = 1.7 g/cc, tensile strength = 500ksi, modulus = 27Msi, residence time = 200s)	N/A
June 30, 2022	M7: Process 4 tows of 24k filaments ea. CF production (Density = 1.7 g/cc, tensile strength = 550ksi, modulus = 29Msi, residence time = 160s)	N/A
Aug. 31, 2022	M8: Process optimization. CF production (tensile strength = 550ksi, modulus = 29Msi). Energy balance acquisition.	N/A
Aug. 31, 2022	M9: Demonstrate HTC at least 5% cost savings versus conventional carbonization.	N/A
Sept. 30, 2022	M10: Final report with discussion about further technology implementation/scale up.	N/A CRIDGE

National Laboratory

Approach (conventional PAN processing)

Major Manufacturing Costs

Precursor ca. 43%
Oxidative stabilization 18%
Carbonization 13%
Graphitization 15%
Other 11%

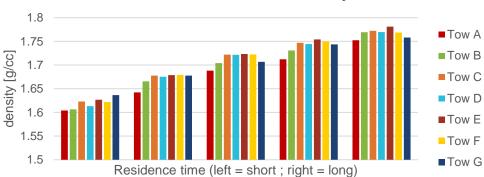
- Automotive cost target is \$5 \$7/lb
- Tensile property requirements are 250 ksi, 25 Msi, 1% ultimate strain
- ORNL is developing major technological breakthroughs for major cost elements

Approach (CPEC)

- Conventional furnaces consume significant energy heating large volumes of inert gas surrounding the fiber.
- If thermal energy could be directly coupled from an energy source to the fiber, tremendous energy savings could be realized.
- This project uses electromagnetic coupling to directly heat the fiber
- Dielectric/Maxwell-Wagner heating mechanisms are utilized

$$P_{v} = 2\pi f |E|^{2} \varepsilon_{0} \varepsilon' tan \delta$$

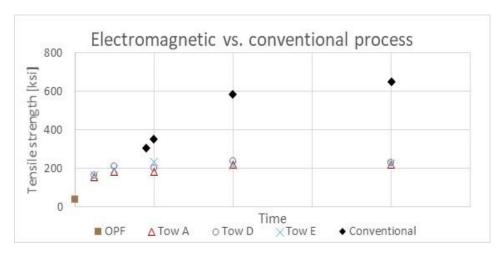
- P_{v} volumetric power transferred to the material.
- ε' is the relative dielectric constant.
- ε_0 is permittivity of free space, 8.85418782 x 10⁻¹² F/m.
- |E| is the magnitude of the local electric field intensity (V/m).
- $tan\delta$ is the loss tangent of the material.
- f is the operational frequency.



Progress — Concept validation

Evaluation of LTC system pushed to the maximum of its potential (extreme condition with limited modification)

Material density



- Existing setup (designed for LTC) used for performance evaluation
- 7 tows of oxidized PAN (OPF, 50k filaments) are processed simultaneously
- 5 different residence times
- Full carbonization attempt in one stage (perf. vs. residence time)
- Power is set to its maximum (constant)

Based on density:

- → Very short process: with ~1.62 g/cc, LTC level only is achieved
- → Very long process: with ~1.76 g/cc, HTC level is achieved

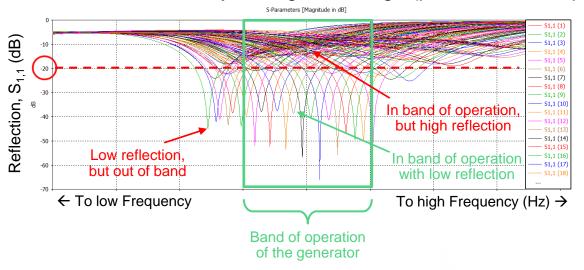
Mechanical properties

- 3 tows, A, D, E (among the 7) are tested at each residence time
- Results are compared with a modified conventional process set to mimic a one stage process
- Temperature distribution between CPEC-4 and the modified conventional setup is the <u>main difference</u> (potentially higher temperature in the conventional process)
- Short residence time could not be achieved using the conventional line (technical reasons)

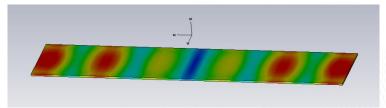
Based on Mechanical:

- → Very short process: with ~150 200 ksi, LTC level is achieved
- → Very long process: with ~200 ksi, HTC level is NOT achieved (500 600 ksi is expected)

→ TWO-STAGE PROCESS REQUIRED



Progress — **CEM**


- CEM is used to design the future setup:
 - Design methodology:
 - Energy transfer is frequency dependent: low reflection bands must be in the band of operation of the generator (green window)
 - Reflection coefficient S_{1,1} is minimized = good energy absorption and temperature elevation (ideally if S_{1,1} < -20dB = good tuning)
 - Pattern of radiation must be appropriate
 - Design of applicator must be realistic
 - Materials are selected for:
 - » EM properties
 - » Thermal properties
 - » Mechanical properties
 - Parts must be manufacturable and assemblable
 - System must be safe

– Examples:

Reflection study for a given design (parameter sweep)

Pattern of radiation on a 200k filament tow

A band of 200k filaments (4 x 50k filaments) propagating along the "u" axes. The gradient of color shows a typical pattern of radiation.

Progress - Ancillary activities

Procurement:

- Procurement of some parts with long lead time already begun
 - Transmission line (partial)
 - Power measurement system
 - Fiber handling system in process of upgrade (design completed, quotation in progress)

Conventional conversion equipment (for baseline and comparative study)

- 2 furnaces refurbished and installed
- Fiber handling system designed/fabricated/received
- Some tasks remains to be done:
 - Nitrogen line
 - Exhaust system

Lab space management

- Former LTC system modified, upgraded (monitoring), etc.
- Space for the future setup established (with all utilities and support systems)

Feedstock material supply

 2 types feedstock material with different packaging were acquired (design of the fiber presentation accomplished for both forms of material)

Administrative tasks

Delay in setting the contract (ORNL changed its contract procedure):
 beginning: November 17, 2021

Response to Previous Year Reviewer's Comments

- Previous year scoring (AMR 2020):
 - Relevant to current DOE objectives: N/A
 - Resource allocation: N/A

→ This is the first year for this project: no previous review

Collaboration and coordination

ORNL is performing this project in collaboration with:

4XTechnologies — Joint development. Equipment construction and experimental work performed at this site. 4XTechnologies is a dynamic startup located in Knoxville, TN, with a core focus on plasma science and engineering and experience in fiber treatment/conversion and environmental applications.

Remaining Challenges and Barriers

- Based on past experience and the knowledge acquired with the LTC project, anticipated barriers are:
 - Need for a better applicator thermal insulation
 - Need for a better selection of dielectric materials
 - Possible insufficient power supply capacity. Evaluation in progress. Backup solution already available.
 - Further development of CEM model that encompasses thermal property changes
 - Hardware specification rated for higher rate of energy transfer

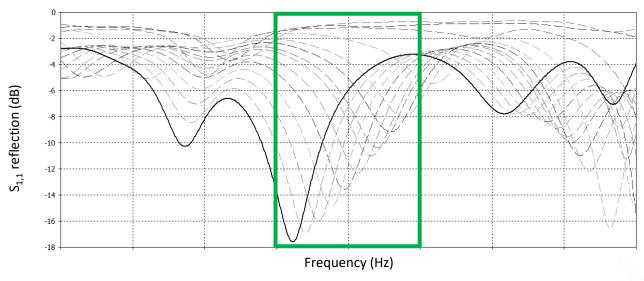
Proposed Research

FY21-22: High temperature carbonization using EM (HTC)

- FY21: (design, construction, and testing)
 - Complete the CEM modeling study and identify an acceptable design
 - Create a CAD model (mechanical drawing)
 - Machine and assemble the applicator parts
 - Commission, operate, modify/upgrade (based on need) the system and reach the subsequent milestones related to the production of CF material
- FY22: (fiber production)
 - Complete the overall cycle of carbonization using electromagnetic energy
 - Evaluate the energy benefits
 - This complete cycle will require two discreet processing units in series (LTC + HTC). This
 approach needs to be demonstrated at the end of this project.

Summary

- HTC project initiated on Nov 17, 2020
- Evaluation of the potential of the overall limits and thresholds of the LTC technology:
 - Required fiber density can be achieved, but the corresponding mechanical requirements are not satisfied
 - This clarifies the technological path to follow
- CEM is used to evaluated multiple potential designs
 - Selection of a promising design
 - Fine tuning parameters via CEM iterations
 - Once acceptable results are achieved, construction of the physical system
- Progress on ancillary work and hardware acquisitions



Technical Backup

Technical Accomplishments (FY2020)

Energy reflection: example of parameter sweep with CEM modeling

Plot: EM energy vs. frequency for a given design. Each dotted line represents a calculation for a given parameter value.

This example shows how a low reflection band shifts with a single parameter change. In this case, as the parameter is changed, the reflection is decreasing. However, it remains above the target of -20dB until the frequency leaves the band of operation (the green frame). This invalidates this parameter change.