Project ID: mat164

Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

2021 DOE Vehicle Technologies Office Annual Merit Review

Multiscale Development and Validation of the Stainless Steel Alloy Corrosion (SStAC) Tool for High Temperature Engine Materials

PI: Michael R Tonks

Department of Materials Science and Engineering, University of Florida

Team Members:

Simon Phillpot, University of Florida; **Adrien Couet & John Perepezko**, University of Wisconsin-Madison; **Wen Jiang**, Idaho National Laboratory; **Mark Carroll**, TENNECO *June 4, 2021*

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

UF

- Project start date: Oct 1, 2018
- Project end date: Feb 28, 2022
- Percent complete: 78%

Budget

- Total project funding
 - DOE Share: \$1500K
 - Cost Share: \$375K
- DOE funding per budget period: \$500K

Barriers

- Corrosion sensitization of valve steels at high temperature
- Lack of *predictive modeling* mandates conservative design

Partners

Relevance

Barrier

UF

Conservative design is mandated by a lack of predictive modeling of the sensitization of stainless steels to corrosion at high temperature

Objectives

- Develop the open source Stainless Steel Alloy Corrosion (SStAC) tool for modeling corrosion of 21-2N, 21-4N, and 23-8N valve steels in an engine environment.
- Quantify the *impact of microstructure and alloy composition on valve steel corrosion* using laboratory and engine experiments and mesoscale modeling and simulation.

Approach: The SStAC tool is being developed using a multiscale approach validated by laboratory and engine data

Milestones:

We have completed our first six tasks and achieved our both of our Go/No-Go decisions

Tasks

BP1 Go-No Go: Corrosion model must be within 25% of experimental data BP2 Go-No Go: SStAC tool must function in 1D, 2D, and 3D

BP3 FINAL: SStAC tool must predict corrosion rate with < 10% error

Technical Accomplishments and Progress: **Overall Accomplishments**

nanometers

UF

100's of microns

Atomic-Scale Simulations

 Calculated formation and
Added additional oxide migration energies in metal and oxide phases

Mesoscale Simulations

- phases
- Completed mesoscale tool

microns to millimeters Lab experiments

 Completed sample characterization from laboratory and engine tests

millimeters and up **Engineering scale**

 The SStAC tool functions in 1D, 2D, and 3D

Specific properties and models are determined and passed up the scale

Technical Accomplishments and Progress: Review of Experimental Approach

Initial Sample Preparation and Characterization

Average grain size: 9.4 μ m

Corrosion at 700 °C for up to 1000 hours with controlled gas composition

700 °C-

Two valve alloys are investigated hrs 21Cr-2Ni-8.5Mn 23Cr-8Ni-1.5Mn

21Cr-2Ni-8.5Mn has parabolic growth but spallation observed in 23Cr-8Ni-1.5Mn

Nanoscale characterization

Oxide growth rate is limited by p-type MnCr₂O₄ spinel inner oxide growth

Technical Accomplishments and Progress: 21-2Ni-8.5Mn Alloy Characterization

200 nr

Thermodynamic analysis Observed oxidation progress agrees with thermodynamic data

UF

time (hrs)

BCC transformation near metal/oxide (M/O) interface due to Mn Depletion

Characterization of engine-tested valves (lower temperature)

Technical Accomplishments and Progress: Atomic-Scale Simulations

- Nudged elastic band calculations with density functional theory (DFT) and molecular dynamics (MD) are used to determine diffusion barriers
 - We have investigated the diffusivity of metallic species in both alloy and oxide phases

Vacancy and vacancy + anti-site migration profiles for cations in the $MnCr_2O_4$ spinel phase

An ensemble of Fe and Cr vacancy migration profiles in a disordered FeCrMn simulation cell

Technical Accomplishments and Progress: Mesoscale Simulation

Development

- Mesoscale model is based on CALPHAD free energies
- Diffusivities are taken from atomic simulation results

Capabilities

- Model predicts the growth of Cr, Mn, and Cr-Mn oxides
- Also represents vacancy transport and void growth

Results

 We have used the model to investigate mechanisms for oxide growth by comparing to experimental data

Technical Accomplishments and Progress:Macroscale Corrosion modelGDOE

10.5

Conce

Model summary

UF

- The model now accounts Mn depletion near the M/O interface.
- Primary assumptions:
 - Oxide formed is MnCr₂O₄
 - Corrosion rate is limited by Mn diffusion in the metal not in the oxide
 - Interfacial reactions are at pseudo-equilibrium
 - The Mn vacancy flux in the oxide is equal to the Mn flux at the M/O interface
- Calibrated parameters:
 - Mn/Cr diffusion coefficient D in the alloy
 - Initial concentration gradient at M/O interface

Distance from the M/O interface [µm]

Technical Accomplishments and Progress: SStAC tool implementation

- SStAC tool has been created using the finite element method with the MOOSE framework to solve the corrosion model in 1D, 2D, and 3D
 - Oxide growth can be directly modeled using X-FEM
 - It can also be implied from Mn and Cr depletion for a more efficient simulation

UF

Response to previous year reviewers' comments

- The alloy systems that the team is currently working on are too simple model alloys.
 - The 21-2N and 23-8N valve steels we are considering are engineering alloys used by TENNECO and other vendors
- The experimental data to evaluate corrosion condition seem to be the mass variation only. Does the PI consider including microstructure information?
 - In addition to weight gain measurements, we have done extensive microstructure characterization using SEM, EDS and TEM
- What methodology will the project team use to validate the developed SStAC tool?
 - We will directly compare the SStAC tool predictions with data from TENNECO engine tests and from our laboratory tests.

Collaboration and Coordination with Other Institutions

Developing macroscale SStAC tool, carrying out laboratory corrosion experiments and analyzing corroded samples

Providing mentorship and guidance on the application and development of MOOSE

TENNECO

Providing engine valve material, sample preparation, and carrying out engine testing

We meet monthly as a team with more frequent interactions between specific team members

Remaining challenges and barriers

- We have not yet determined the impact of gas composition and temperature cycling on the alloy corrosion
- The SStAC tool does not yet consider the impact of microstructure and alloy composition
- The SStAC tool has not yet been validated for various alloys and engine conditions

Proposed Future Research

(subject to change based on funding levels)

Experimental work

- Carry out corrosion tests with water vapor and CO2 and with temperature cycling
- Carry out high temperature engine tests at TENNECO
- Characterize the microstructure of all corroded samples
- Mesoscale simulations
 - Calculate formation and migration energies in more phases with DFT and MD.
 - Quantify the impact of microstructure and alloy composition on corrosion with the mesoscale tool

SStAC tool development

- Add capability to consider alloy composition and microstructure using mesoscale results
- Validate against data from the literature, TENNECO, and from the project.

Summary

- The Stainless Steel Alloy Corrosion (SStAC) tool will
 - Be open-source, based on the MOOSE framework
 - Include impact of microstructure and alloy composition from lower length-scale simulations
 - Be validated using new data from laboratory and engine testing

Months

UF Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE