A Hybrid Physics-Based, Data-Driven Approach to Model Damage Accumulation in Corrosion of Polymeric Adhesives

Presenter: Roozbeh Dargazany (MSU)

Collaborating Team: Emad Poshtan (Bosch) John Harworth (Bosch) William V. Mars (Endurica)

2021 U.S. DOE Vehicle Technologies Office Annual Merit Review

Project ID #: MAT152 May 11, 2021

This presentation does not contain any proprietary, confidential or otherwise restricted information.

Project overview

Partners

- Michigan State University(MSU) (Lead)
- Robert Bosch LLC.
- Endurica LLC.
- JDV Lightweight, LLC. (consultant)
- Composite Center@MSU (subcontract)
- Dow Chemicals, Parker Lord (suppliers)

Budget

- DOE Share: \$ 967,662
- Collaborators Share: \$474,526
- Cost Share: 32.9%
- FY 2020 DOE Share: \$612,311

Timeline

Start:January2019End:December 2022Completion:75%

Barriers*

- Lack of reliable joining technology for dissimilar materials
- 2. Lack of cost-effective tests for evaluation of corrosion
- 3. Lack of constitutive model capable of predicting corrosion
- 4. Predictive modeling tools
 - Prediction error <10%
 - Lack of validated test protocols

Read *Light Duty Workshop Final Report and U.S. DRIVE MTT Roadmap, section 5.1.

Relevance & Objectives

Overall Objectives:

- A <u>theoretical model</u> to describe damage accumulation in constitutive behavior with respect to (1) deformation, (2) vibration, (3) hydrolysis, (4) thermo-oxidation and (5) photo-oxidation.
- A <u>software</u> to predict failure of cross-linked polymeric adhesives with respect to damage accumulated by environmental and mechanical loads with a <u>10% error</u>.

Impact/Relevance to DOE

Predicting failure in adhesives of dissimilar materials is necessary to

- facilitate use of lightweight material for vehicle mass reduction
- <u>Speed up the design</u> of composite joints in vehicle structures for lightweighting to address DOE 2030 targets
- <u>reduce time/cost</u> required for testing corrosion failure which makes the use of lightweight materials more attractive for OEM
- Improve CAE prediction capability to achieve a **reliable service-life** of joints

Critical segments

Degradation					
Thermo					
Hydro	Ĵ				
Hygro	RH%				
UV	-00-				

Approach & Milestones

In Progress+Finished✓

Milastanas	Completed		
IVIIIestones	In-progress		
	Shifted to next year		

	Derivation & Validation of the quasi-static model								
shed 19	Derivation & Validation of the vibration induced damage model								
Finis FY		Milestone							
	Derivation & Validation of Thermo-oxidation n	nodel with multipl	e adhesives	Go/No-Go					
	Validation of Hydrolysis model with multiple a	dhesives		Go/No-Go					
	Validation of the modular platform concept								
hed 20	Derivation of Accumulative Damage Failure Model Validation (2021)								
⁼ inis FY;	Derivation of photo-oxidation model with multiple adhesives Validation (2021)								
	Derivation of coupled Thermo- & photo-oxidative model Validation (2021)								
	Derivation of coupled Thermo-oxidative & Hydrolysis model Validation (2021								
going Y21	Training/Fitting Neural network engine Validation (2022)								
D L	Hybrid platform on combined degradation	Validation (2022	2)	Milestone					
Plann ed FY22	Software predictions against sample adhesives exposed to all combination mechanisms for all degradation mechanisms								
HPM				7					

Any proposed future work is subject to change based on funding levels.

IGH PERFORMANCE Material Group

MICHIGAN STATE UNIVERSITY

Central Experimental Database (Pilot test)

IGH PERFORMANCE Material Group

Full Hybrid Experimental matrix (Exp +Virtual points)

	Test Typ	e \ Material	ACR	DC	PUB	PUG	Test Typ	ACR	DC	PUB	PUG	
		Failure						FTIR	100%	100 %	100 %	100%
	Mech. Characht. tests	Cyclic					Chemical.	DSC	100%	100 %	100 %	100%
	0	Permanent Set	I	0	0	S		Cross link Density Measurement	100%	100 %	100 %	100%
¢		M BOSCH	4									10

Thermo-Oxidation Analysis

Experiments

- 1. Thermal-oxidation
- 2. Photo-thermal oxidation (Photo + Thermal)
- 3. Hydrolysis (Hydro + Thermal)
- 4. Hygrothermal (%RH + Thermal)

Polyurethane: Temperature-jump

- Adhesive was aged at 60°C to 80°C and vice versa.
- Degradation due to higher temperature.
- High temperature causing crosslink formation.

Specimens aged in 60°C for 10-days and then aged in 80°C for 3, 10 and 30-days

HIGH PERFORMANCE

Specimens aged in 80°C for 10-days and then aged in 60°C for 3, 10 and 30-days

Experiments

- 1. Thermal-oxidation
- 2. Photo-thermal oxidation (Photo + Thermal)
- 3. Hydrolysis (Hydro + Thermal)
- 4. Hygrothermal (%RH + Thermal)

Single condition aging

To determine short and long-term aging effects:

Intensity of 1 W/m²/nm Aging periods: 1 – 270 days

То determine high and low temperature effects: Aging Temperatures: 45-80 C

Materials break down in extended periods and high temperatures

450

Temperature jump / Dual condition aging

To further investigate the effects of Temp + Irradiation, Temperature Jump & Dual aging was conducted

Material ages to a limit, and further deterioration is limited.

Independent of aging period and temperature regime.

We conclude that photo-oxidation dominates material behavior more than thermo.

Photo-Experimental Database

HIGH PERFORMANCE Material Group

Photo-Thermo Relaxation set

- Designed and Created in-house
- Material used was poly-urethane.

erial Grou

- Test was conducted in thermo-oxidation and photo-oxidation
- Greater relaxation at higher temperatures

Thermo-oxidation

• UV Irradiation counteracts relaxation caused by temperature

Dual condition: Photo –Thermo aging

Dual Condition: PUB

- Was aged for 10 days in either 60 or 80° C.in thermo-oxidative conditions
- Was then aged in the same temperature in photo-oxidative conditions for durations 3, 10 & 30 days
- Failure and cyclic tests were conducted.
- Material degrades from higher temperature aging mode.

Specimens aged in Dual aging at 60 & 80°C for 30 days for thermo-oxidation at 0%RH for then moved to photooxidation for 3, 10, and 30 days.

Hygrothermal / Hydrolytic Analysis

Water uptake as a damage precursor

- Hydrolytic aging
 - · High water uptake and swelling
 - Severe damage and reduction in crosslink density
 - · Linear trend with square root of time
- Hygrothermal aging
 - Low moisture uptake (0.5-1%)
 - Mass loss α T

PU specimens after aging in hydrolytic condition after 90 days. Maximum swelling observed in 80C.

Water uptake and mass-loss

Experiments

- 1. Thermal-oxidation
- 2. Photo-thermal oxidation (Photo + Thermal)
- 3. Hydrolysis (Hydro + Thermal)
- 4. Hygrothermal (%RH + Thermal)

Silicone

Damage reversibility in hydrolytic aging

- · Mechanical testing in wet state vs dry state
- Softening behavior due to plasticization

σ variation

distilled water vs sea-water

- Better mechanical properties after removing water
- Higher damage in distilled water than sea-water (salt barrier)
- Stress-strain behavior indicates severe chain scission during hydrolytic aging
 - Stress decreased with increase in time (t) and temperature (T) i.e. σ α 1/T, 1/t
 - Strain increases with the increasing temperature but decreases with time

i.e. ε α Τ, 1/t

ε variation distilled water vs sea-water

Failure stress (σ) and strain (ϵ) Wet vs Dry silicone adhesive samples

Dual-effect Aging: 0%RH to Submerged

- Aging environments:
 - Thermo-oxidation (10d) to submerged (3,10,30days)
- Temperature (T) : 60°C and 80°C
- Cross-linking (CLD) and chain scission (CS):
 - Ph-1 (0%RH): T α CLD (hardening)
 - Ph-2 (submerged):
 - 60°C : CLD dominates (hardening)
 - 80°C : CS dominates (softening)

Dual-effect Aging:0%RH to 80%RH

- Aging environments:
 - Thermo-oxidation (10d) to hygrothermal 80%RH (3,10,30days)
- Temperature (T): 60°C and 80°C
- Cross-linking (CLD) and chain scission (CS):
 - Ph-1 (0%RH): T α CLD (hardening)
 - Ph-2 (80%RH):
 - 60°C : CLD dominates (hardening)
 - 80°C : CS (heat + water molecules)

Hygrothermal aging: Competing sub-aging phenomenon

- Thermo-oxidation: Chain scission + Increase in crosslink = Stress hardening + Tg increase
- Hydrolytic aging: Chain scission + reduction of crosslink = Stress softening + Tg decrease
- Hypothesis:

Hygrothermal aging is a competitive environment between two sub-aging phenomena i.e. hydrolysis and thermo-oxidation aging

Cross-link Density

Technical Accomplishments

Modular Platform publication

- Khalili et al. (2019), Rubber Chem. & Tech. 92(1), 51-68
- Morovati & Dargazany (2019), SoftwareX 100229
- Morovati et al. (2019), ', Math. Mech. Solids
- Morovati & Dargazany (2019), Phys Rev. E. 100229

HIGH PERFORMANCE Material Group

Vibration

- Moravati & Dargazany IMECE2020
- Morovati et al., Int. J. Plasticity (2021)

Thermo

- Mohammadi & Dargazany, Int J. Plasticity, 118 (2019)
- Mohammadi et al. ECCMR 2019
- Morovati & Dargazany, IEC 2019

Hydro

- Bahrololoumi et al., Int. J. Plasticity 1. (2020)
- Bahrololoumi & Dargazany IEC 2019

Hygro = Hydro + thermo

- Wanru et al. IMECE2020
- Bahrolouloumi et al. IMECE 2020
- Bahrolouloumi et al.,
 - Int. J. Mechanical Science

Photo+Thermo

 Mohammadi & Dargazany, Polymer Deg. & Stability

Modeling

- 1. Vibration (Finished in 2020)
- 2. Thermal-oxidation
- 3. Hydrolysis
- 4. Hygrothermal (Hydro + Thermo)
- 5. Photo-thermal oxidation (Photo+Thermal)
- 6. Vibration + thermal-oxidation (on going)
- 7. Machine-learned engine (on going)

Vibration-induced damage

Softening of the material due to large time usage To model the constitutive behavior of adhesives through **vibration**

Experiment :

Approach

Constitutive model :

Using kinetics of irreversible chain scission

$$\begin{array}{ll} \stackrel{d_i}{\vec{P}}(n) &= P_0(n) \ e^{-C_s(n) \ j} \\ C_s(n) &= \int_{cycle} \exp\left[\frac{\alpha}{k_B T} \left(\mathcal{L}^{-1}\left(\frac{R\lambda^{d_i}}{n}\right) - f_a\right)\right] dt \end{array}$$

Vibration-induced damage

Modeling

- 1. Vibration
- 2. Thermal-oxidation (Finished in 2020)
- 3. Hydrolysis
- 4. Hygrothermal (Hydro + Thermo)
- 5. Photo-thermal oxidation (Photo+Thermal)
- 6. Vibration + thermal-oxidation (on going)
- 7. Machine-learned engine (on going)

Thermo-Oxidative Aging

Goal: To model the constitutive behavior of adhesives through thermo-oxidative aging Result

Challenge Finding the correct decay function

Approach Dual network hypothesis

Arrhenius functions as decay function $\Psi_M(t,T,F) = \rho(t,T)\Psi_0(F) + (1 - \rho(t,T))\Psi_{\infty}(F)$

$$\rho(t,T) = A_1 \exp(-\alpha t) + A_2 \exp(-\beta t)$$

Time-temperature superposition

$$a_T = exp\left(\frac{E_a}{R}\left(\frac{1}{T_{ref}} - \frac{1}{T}\right)\right)$$

Modeling

- 1. Vibration
- 2. Thermal-oxidation
- 3. Hydrolysis (Finished in 2020)
- 4. Hygrothermal (Hydro + Thermo)
- 5. Photo-thermal oxidation (Photo+Thermal)
- 6. Vibration + thermal-oxidation (on going)
- 7. Machine-learned engine (on going)

Hydrolysis Model

$$\begin{split} \Psi_M(t,T,\mathbf{F}) &= N(t,T)\Psi_0(\mathbf{F}) + N'(t,T)\Psi_\infty(\mathbf{F}) \\ N(t,T) &= \exp\left(-\gamma\exp(-\frac{E_a}{\mathcal{R}T})t\right) \end{split}$$

• Strain energy of a single chain

$$\hat{\psi}_c(n, \bar{r}_{\bullet}) = nK_bT \int_0^{\varphi} \hat{\beta} d\varphi, \quad \hat{\beta} = \left[1 - \frac{1 + \varphi^2}{n}\right] \beta$$

Unaged

Probability Distribution
 Function of a Polymer Chain

$$\mathcal{P}_{\bullet}(n) = \frac{1}{2\sqrt{\pi\sigma^2}} \exp(\frac{(n-\mu_{\bullet})^2}{-2\sigma^2})$$

Networks and Subnetworks

$$\Psi_{\bullet} = \frac{1}{A_s} \int_{S} \psi_{\bullet} du^d \cong \sum_{i=1}^k \psi_{\bullet}^{d_i} w_i$$

Inverse Langevinge Function approximation

$$\mathcal{L}^{-1}(x) \cong \frac{1}{1-x} + x - \frac{8}{9}x^2$$

• Kinetics (Esters, Amide, Carbonate)

$$-\frac{d[COOH]}{dt} = \xi[Ester][Water][COOH] = \kappa[COOH]$$

$$\Psi_M = N(t,T)\Psi_0 + \alpha N'(t,T)\Psi_m + (1-\alpha)N'(t,T)\Psi_d$$

Modeling

- 1. Vibration
- 2. Thermal-oxidation
- 3. Hydrolysis
- 4. Hygrothermal (Hydro + Thermo)
- 5. Photo-thermal oxidation (Photo+Thermal)
- 6. Vibration + thermal-oxidation (on going)
- 7. Machine-learned engine (on going)

Hygrothermal aging: Competing sub-aging phenomenon

- Thermo-oxidation: Chain scission + Increase in crosslink = Stress hardening + Tg increase
- Hydrolytic aging: Chain scission + reduction of crosslink = Stress softening + Tg decrease
- Hypothesis:

Hygrothermal aging is a competitive environment between two sub-aging phenomena i.e. hydrolysis and thermo-oxidation aging

Cross-link Density

Hygrothermal model

The strain energy of the material in all states of aging,

$$\Psi_M(t,T,RH,\mathbf{F}) = N(t,T)\Psi_0 + N'(t,T)\Psi_0$$

$$N(t,T) = \exp(-\gamma exp\left(-\frac{E_a}{RT}\right)t)$$

N(t,T) = 1 - N'(t,T) are predefined shape function

We defined two end-state of the material as the state of polymer matrix at initial state Ψ_0 and fully aged state at time infinity Ψ_{∞} .

The hydrolysis network decomposes into morphed Ψ_m^∞ and deactivated network Ψ_d^∞

$$\begin{array}{ll} \Psi_h^\infty & 0 \leq \alpha \\ = \alpha \Psi_m^\infty + (1 - \alpha) \Psi_d^\infty & \leq 1 \end{array}$$

MICHIGAN STATE UNIVERSITY

Summary	\mathcal{N}_0	Number of chains of virgin network per unit volume
Carrinary	μ_0	Mean value of unchanged network chain length distribution
	σ	Standard deviation of chain length distribution in all networks
Thermony	$\overline{R_0}$	Normalized end-to-end distance of reference chains
Hydrohvrin	ν	Sliding ratio w.r.t. bond strength
o de network	$\overline{R_m}$	The normalized end-to-end distance of chains in the morphed network
Unchanged network	μ_m	The mean value of morphed network chain length
Material parameters	α	The percentage of active chains in the hydrolytical network
Strain energy function Unchanged network Hydrolytic network Thermo network Coupling parameters $\Psi = \Psi_0$ $N_0 k_b T \overline{R}_0 \ \mu_0 \ \sigma \ \gamma$ $\overline{P}_0 \ \mu_0 \ \sigma \ \gamma$ $\overline{P}_0 \ \mu_0 \ \sigma \ \gamma$ $\overline{P}_0 \ \mu_0 \ \sigma \ \gamma$	μ_t	The mean value of thermo network chain length distribution
$\Psi = N(t, T)\Psi_0 + N'(t, T)\Psi_k \qquad \qquad$	γ	Arrhenius rate factor
$\Psi = N(t,T)\Psi_0 + N'(t,T)(1-\beta)\Psi_t + N'(t,T)\beta\Psi_h \qquad \boxed{N_0k_bT \bar{R}_0 \mu_0 \sigma \gamma} \qquad \boxed{\bar{R}_m \mu_m \alpha \frac{E_a}{\bar{\mathcal{R}}} \gamma} \qquad \boxed{\bar{R}_T \mu_T} \qquad \boxed{\bar{R}_T \mu_T}$	<i>Q</i> , θ	Adjusting parameters to keep eta between zero and one
	E_a, E_b	Activation energies

Final Equation:

$$\boldsymbol{T} = \frac{\partial \Psi_M}{\partial \boldsymbol{F}} - p\boldsymbol{F}^{-T} = N(t,T)\frac{\partial \Psi_0}{\partial \boldsymbol{F}} + N'(t,T)\left[\beta(t,T,RH)\frac{\partial \Psi_t^{\infty}}{\partial \boldsymbol{F}} + (\mathbf{1} - \beta(t,T,RH)\frac{\partial \Psi_h^{\infty}}{\partial \boldsymbol{F}}\right] - p\boldsymbol{F}^{-T}$$

MICHIGAN STATE UNIVERSITY

Model prediction against Rubric of Env. Condition

Modeling

- 1. Vibration
- 2. Thermal-oxidation
- 3. Hydrolysis
- 4. Hygrothermal (Hydro + Thermo)
- 5. Photo-thermal oxidation (Photo+Thermal)
- 6. Vibration + thermal-oxidation (on going)
- 7. Machine-learned engine (on going)

Dual condition: Photo – Thermo aging

Dual Condition: PUB

- Was aged for 10 days in either 60 or 80° C.in thermooxidative conditions
- Was then aged in the same temperature in photo-oxidative conditions for durations 3, 10 & 30 days
- Failure and cyclic tests were conducted.
- Material degrades from higher temperature aging mode.

Specimens aged in Dual aging at 60 & 80°C for 30 days for thermo-oxidation at 0%RH for then moved to photooxidation for 3, 10, and 30 days.

Kinetic Model

- The general scheme of photo-oxidation reactions can be written as:
 - Initiation: $POOH \rightarrow \alpha P^*$
 - Propagation: $P^* + O_2 \rightarrow PO_2^*$, $PO_2^* + PH \rightarrow POOH + P^*$
 - Termination: $PO_2^* + PO_2^* \rightarrow Product$
- *P* is a symbol for polymeric chemical compounds. Defining the rate of oxidation in the course of aging:
 - $-\frac{d[P]}{dt} = k[P]^q$
 - [*P*] is the concentration of chemical compound.
 - *k* is the reaction rate coefficient, it is a function of temperature T and the light intensity *I*. $k = \tau I^{\alpha} e^{-E'_{\alpha}}$, $E'_{a} = \frac{E_{a}}{RT}$
 - [P] = $Aexp\left(-\tau I^{\alpha}(e^{-E'_{a_{ref}}})\alpha_{T}t\right) \xrightarrow{decay function for photo-oxidative aging} \rho_{o}(t) =$ $exp\left(-\tau \Gamma^{\gamma} e^{-E'_{a_{ref}}} \alpha_{T}t\right), \Gamma$ reflects the effect of UV.
 - γ is a function of UV radiation.

Unaged network $(t = t_0)$ continues to change and got replaced by two new-subnetwork at the fully aged state $(t = t_{\infty})$.

$\varphi_{photo+thermo} = \rho_{thermo}\varphi_0 + (1)$

$$-
ho_{thermo})(
ho_{photo}arphi_{thermo}+(1-
ho_{photo})arphi_{photo})$$

$$\rho_{thermo} = A_1 \exp(-e^{\frac{-E_a}{RT}}t)$$

$$\rho_{photo} = A_2 \exp(-l^{\alpha} t)$$

- A_1, A_2, α : Constants
- *I* : Radiation intensity
- E_a : Activation energy

Continuous Network Hypothesis

Model validation

Material: Black Polyurethane

Fitting	N ₀ C	C_{r0}	R_0	υ	C_{rs}	C _{rc}	R_c	R_s	E_{a1}	C_{rI}	R_I	α	β	γ	E_{a2}
Parameters	Mate for vi	rial pa rgin s	arame tate	eters	Therm param	io-oxida ieters	ative ma	aterial	R.	Phot para	o-oxic meter	lative s	mater	rial	

Parameters are independent to each other between 3 states: virgin, thermo, and photo

Modeling

- 1. Vibration
- 2. Thermal-oxidation
- 3. Hydrolysis
- 4. Hygrothermal (Hydro + Thermo)
- 5. Photo-thermal oxidation (Photo+Thermal)
- 6. Vibration + thermal-oxidation (on going)
- 7. Machine-learned engine (on going)

Thermo-oxidative Aging

Vibration with thermo-oxidative model

- Material:
 - Ph-1: Development (SBR)
 - Ph-2: Validation (DOWSIL-7091 and 3M-590)
- Aging environments:
 - Ph-1: Thermo-oxidation
 - Ph-2: Thermo-oxidation, UV, hygrothermal / hydrolytic aging
- Temperature (T) : 60°C and 80°C
- Model is based on toughness comparisons between:
 - Unaged specimen
 - Fatigued unaged specimen (mechanical damage)

 $\mathscr{D}_{me} = 1 - \Theta j^{-\zeta}$

· Aged specimens (environmental damage)

$$\mathscr{D}_{ev} = 1 - exp\left(-\gamma exp\left(-\frac{E_a}{\mathscr{R}T}\right)t\right)$$

 Aged + fatigued specimens (environmental mechanical damage)

$$\mathscr{D} = d_1 \tanh\left(\mathscr{D}_{me}^{d_2} + \mathscr{D}_{ev}^{d_2}\right)$$

Modeling

- 1. Vibration
- 2. Thermal-oxidation
- 3. Hydrolysis
- 4. Hygrothermal (Hydro + Thermo)
- 5. Photo-thermal oxidation (Photo+Thermal)
- 6. Vibration + thermal-oxidation (on going)
- 7. Machine-learned engine (on going)

Machine Learned models: Hybrid physics induced data-driven framework

The proposed model is based on the concept of a cooperative multi-agent system Aⁱ_j, i ∈ {1, n}, j ∈ {1, m} to describe different features in the material behavior with n × m different Neural Network learning agents (L-agents).
Agent Team

 $Two - point \frac{strain}{stress} tensors(F: P) \rightarrow E: deformation gradients, P: first Piola - Kirchhoff stress$

 $Material \ \frac{\text{strain}}{\text{stress}} \text{tensors}(E:S) \rightarrow E: Lagrange \ strain, S: second \ Piola - Kirchhoff \ stress$

Spatial $\frac{\text{strain}}{\text{stress}}$ tensors($L: \tau$) $\rightarrow L$: Hencky strain, τ : Kirchhoff stress

The model is constrained at multiple steps:

- 1. Model defined based on strain energy
- 2. Hiring micro-sphere for 3D to 1D order reduction
- 3. Network decomposition to separate different inelastic effects
- 4. Defining learning agents to represent each 1D subnetwork

Conditional Neural Network (CondNN) L-Agent

For which the outputs are not only dependent on past occurrences e.g deformation effects on the matrix, but also on external actions e.g. temperature and time of aging effects on the polymer matrix

For the CondNNs structure of L-agents, we considered one input layer, one hidden layer with 4 neurons, and 3 activation functions (soft plus, sinusoid, hyperbolic tangent).

L-agent response is computed using a feed-forward algorithm for a given set of hyper-parameters (n_l, n_n) . Each L-agent can be represented by a CondNNs $\mathcal{A}_j^i := \mathcal{D}^{d_i}(\mathbb{E}^{d_i})\psi_j^d(\boldsymbol{M}_j^i, S_j^i)$ Where $\mathcal{D}_j^i := CNN_e$ ($\boldsymbol{W}_e, \boldsymbol{E}^i$), $\psi_j^d = CNN_m(\boldsymbol{W}_m^j, \boldsymbol{M}_j^i, S_j^i)$

 $\Psi_m^{d_i}$ is the element energy represented by team of L-Agents \mathcal{B}^{d_i} reflecting an additive cooperation between multiple L-Agents $\mathcal{B}^{d_i} = \sum_{i=1}^{N_s} \mathcal{A}_j^i$ based on microsphere concept.

We assume all teams to be identical in the virgin state $\mathcal{B}^{d_i} = \mathcal{B}^{d_j}$.

During matrix deformation, different teams will be exposed to different deformations based on their directions, and the matrix become anisotropic.

 $\psi_j^d(M_j^i, S_j^i)$ is trained on the basis of a non-kinematic input sets M_j^i , internal parameters S_j^i for the mechanical damage CondNN. W_e and W_m^j are related to weight matrices of environmental and mechanical damage.

L-agent response

For the CondNNs structure of L-agents, we considered one input layer, one hidden layer with 4 neurons, and 3 activation functions (soft plus, sinusoid, hyperbolic tangent).

Internal parameter λ_{i-max} to capture the deformation of the rubbers with full memory

$$\boldsymbol{M}_{1}^{d_{i}} = [\lambda_{1}^{d_{i}}], \, \boldsymbol{S}_{1}^{d_{i}} = [\lambda_{1-max}^{d_{i}}], \, \boldsymbol{E}^{d_{i}} = [t,\theta], \, \boldsymbol{M}_{2}^{d_{i}} = [\lambda_{2}^{d_{i}}], \, \boldsymbol{S}_{2}^{d_{i}} = [\lambda_{2-max}^{d_{i}}], \, \boldsymbol{E}^{d_{i}} = [t,\theta]$$

Where $\lambda_1^{d_i} = \sqrt{d_i C d_i}$, $\lambda_2^{d_i} = \sqrt{d_i C^{-1} d_i}$, $\mathbf{C} = \mathbf{F}^T \mathbf{F}$ $\lambda_1^{d_i}$, $\lambda_2^{d_i}$ are related to I_1 , I_2 , as the first and second invariants of \mathbf{C}

We used identical engines, a relatively simple engine built by $N_d = 21$ teams, where each team has $N_s = 2$ agents

The final cost function:
$$\mathcal{L}(\boldsymbol{W}_m^1, \boldsymbol{W}_m^2, \boldsymbol{W}_e) = \frac{1}{2} \sum_{n=1} [g_1 \left(\sum_{i=1}^{21} \sum_{j=1}^2 \omega_i \frac{\partial \mathcal{A}_j^i}{\partial \mathbf{F}} - p \mathbf{F}^{-T} \right) g_1 - P_n^{11}]^2$$

Training and model prediction

Material: Black polyurethane

Material: Styrene-butadiene rubber(SBR)

Material: Natural Rubber (NR)

IGH PERFORMANCE Material Group

Response to Previous Year Review Comments

• **Risk Management**: "There were no risks or risk mitigation strategies identified by the presenter: however, challenges were identified by the project team that indicate an awareness of where risks may occur"

COVID-19 shut-down consequences:

- Forced shut down of all Aging Tests
- Removal of all ultra-long natural aging samples
- Capacity shift by industrial collaborators (uncertainty on resource allocation)

Risks	Mitigation Plan
Supply chain issue to obtain all the adhesives	Fatigue +Environmental damage validation with accelerated aging at short and Mid-range level aging Ultra-long agin only with Polyurethane adhesive
Lack of time/resources to redo ultra-long tests:	Reducing validation set of materials used for ultra- long aging
Non-uniform damage mechanism in the material	-> use of 5 reliability samples for each test-> collaboration with suppliers to use same batch
Complicated and inseparable sources of degradations mechanism	Multi-path aging tests to define synergy

Summary

Accomplishments

- Finished Vibration, Thermo-oxidative and hydrolysis model.
- Developed vibration & thermo-oxidative damage model and machine-learned engine.
- Developed hygrothermal model and verified against rubric of Env. Condition.
- Developed photo-thermo oxidation model with multiple adhesives.
- All pilot tests (mechanical and chemical) finished for all single-aging condition.
- Dual effects (hygrothermal, photo-thermo oxidative) for Polyurethane is finished.
- Temperature jump test for Polyurethane is finished.
- Relaxation test finished for thermo-oxidative aging on Polyurethane.

Future Research

- Correlating ultra-long & Accelerated characterization
- Degradation of adhesion properties
- Data minimization for training/validation of Multi-agent simulators

This material is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Award Number DE-EE0008455.

Thank you

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

