

Phase-Field Modeling of Corrosion for Design of Next-Generation Magnesium-Aluminum Vehicle Joints

Presenter:

Adam Powell

Worcester Polytechnic Institute (WPI)

Overview

Timeline

Start Date: October, 2018

End Date: July, 2022

Budget

Total Project Funding: \$1,899,462

• DOE: \$1,499,612

• Participants: \$ 399,850 (21%)

Actual Costs Incurred: \$1,370,943

• DOE: \$1,068,359

• Participants: \$ 302,584 (22%)

As of March 31, 2021

Status: 65% of time, 71% of DOE budget

Any proposed future work is subject to change based on funding levels

Barriers & Technical Targets

- Barrier: limited understanding of multi-material joint corrosion & fracture Mg-Al, friction stir welds (FSW)
- Target: validated model of microgalvanic corrosion and mechanical failure based on joint microstructure

Accomplishments

- Model of pitting corrosion and galvanic oxidation
- Verified model of Mg-steel FSW joint lap shear failure
- Developed model of Al-Mg FSW joint lap shear
- Characterized Mg-Al FSW joint using many tools

Technology Partners

Worcester Polytechnic University (WPI)

Pacific Northwest Laboratory (PNNL)

Oak Ridge National Laboratory (ORNL)

Magna International, Inc. (Magna)

Relevance and Project Objectives

Relevance DOE Vehicle Technologies Office Mat'ls Team Roadmap Multi-Material Systems Enablers: high-volume joining, corrosion, predictive modeling

Objective Develop and validate phase field corrosion model and coupled mechanical failure model in magnesium-aluminum alloy joints

End-of-Project Goal Predict tensile & fatigue strength of corroded joints within 10% of measured values

Magna – Joint application requirements, materials

PNNL – Friction stir welding, diffusion bonds (Task 1); modeling consulting (Task 4)

ORNL – Advanced characterization (Task 3)

WPI – Corrosion and mechanics testing (Task 2),
 corrosion and mechanics modeling (Task 4)

Challenge problem FCA-Magna ultralight door

Deliverables:

7/2020 Validated 2D galvanic corrosion model 7/2021 Validated model of coupled corrosion

and mechanical failure

7/2022 Accurate model of corroded joint tensile & fatigue strength

Project Approach and Milestones

<u>Time</u>	<u>Goal</u>	Bond (PNNL)	Tests (WPI)	<u>ORNL</u>	Model (WPI)
BP 1: 10/2018- 7/2020	Initial phase field corrosion model: diffusion bond	Diffusion-bond Al-Mg sheet, 6022-ZEK100	Galvanic corrosion - ASTM G71	SEM-EDS, EBSD, FIB, STEM	2-D diffusion bond & galvanic corrosion models
Go/No Go Predict corrosion pit depth within ±2x					
BP 2: 8/2020 - 7/2021	Refine corrosion & initial strength model	FSW 6022- ZEK100 sheet	Cyclic Corrosion Testing (CCT), tensile strength	SEM, STEM, FIB, neutron scattering	3-D corrosion & tensile failure models
	Go/No Go	Predict corrod	ed joint strength w	ithin ±2x	
BP 3: 8/2021 - 7/2022	Refine tensile and fatigue strength models	FSW 6022- ZEK100 sheet	Cyclic Corrosion Testing (CCT), tensile strength	SEM, STEM, neutron scattering	3-D corrosion & tensile and fatigue models
Go/No Go Corroded joint tensile & fatigue strength ±10%					

S(T)EM: Scanning (Transmission) Electron Microscopy

EDS: Energy-Dispersive X-Ray Spectroscopy

EBSD: Electron Backscatter Diffraction

FIB: Focused Ion Beam (milling)

Project Accomplishments & Progress

Phase field corrosion model results are similar to experiments

- 4-component Cahn-Hilliard electrochemistry formulation
- Modeled pitting rate is faster than observed
- Galvanic oxidation model qualitatively agrees with experiments

Model of Mg-Al FSW joint failure requires better fracture data

- Verified model using published Mg-steel FSW joint strength data
- Model of Al-Mg FSW joint shows higher strength than observed
- Nanohardness maps and 3-D characterization indicate bands of grain refinement and intermetallic compound formation
- Model refinement is ongoing to include these effects

Friction Stir Welding

Need to weld through hard 6022 Al into soft ZEK100 Mg – most FSW lap joints go through soft into hard

- Triangular tool instead of cylindrical or others
- Power control instead of RPM, Temperature, etc.

Result: 120 N/mm strength = 80 MPa in ZEK100 cf. 140 MPa yield stress

(N/mm)

Corrosion Experiments

SAE J2334 Cyclic Corrosion Testing

Weight Change per hour per anode area

Corrosion rate dependence on Al:Mg surface area ratio shows cathode-limited behavior in line with expectations

ASTM G71 Galvanic Corrosion Testing

(Surface characterization by ORNL)

Galvanic corrosion tests → Mg pitting Literature: Mg anodic polarization → pitting 1 hr pit diameters 200-300 µm, depths 30-65 µm

Corrosion Model Formulation

Phase field model begins with Al-Mg-H-O quaternary subsystem free energy

Need 4-component system for hydroxides interaction and water oxidation cathode reactions: $Mg + AI(OH)_3 \rightarrow Mg(OH)_2 + AI$ $\frac{1}{2}O_2 + H_2O + 2e^- \rightarrow 2OH^-$

Corrosion Model Results

Prediction of magnesium galvanic oxidation and pitting reaction

Both driven by galvanic potential difference

Oxidation: Mg + H_2O + $\frac{1}{2}O_2 \rightarrow Mg(OH)_2$

Pitting: Mg + $H_2O + \frac{1}{2}O_2 \rightarrow Mg^{2+} + 2OH^{-}$

Pitting result 1 hr: 400-500 µm depth Why so high? 2-D vs. axisymmetric, missing charge transfer resistance

High-performance 3-D model with charge transfer resistance is nearly complete .

Mechanical Deformation Model Verification

Literature model of lap shear failure of steel-magnesium sheet FSW

Wang et al., Materials & Design 192 (2020) 108697

Mechanical Deformation Model Verification

Model of lap shear failure of steel-magnesium sheet FSW WPI team Wang et al. 2020

Al-Mg FSW Joint Geometry

In lap shear, joint fractures roughly on Al-Mg boundary

Al fracture surface, Scanned topography

Computed average interface shape

Al-Mg FSW Mechanical Deformation Model

Model predicts joint strength > 150 N/mm Cf. 110-120 N/mm measured joint strength

Primary Var: S. Mises

FSW Joint SEM Large Area Maps (LAM)

Detailed Characterization/Near Hook Region

Polish down through AI into peak/hook region SEM EDS Large Area Map (LAM) shows Mg "swirls" into AI

25kV SEM Transmission Kikuchi Diffraction

J Aluminum magnesium (12/17)				
WPI FSW Mg/AI Swirl [B] Wirr image MAG: 15.0kx HV: 25 kV WD: 5 mm Px: 19 nm	WPI FSW Mg/Al Swirt [8] Pattern quality MAG: 15 0kx HV: 25 kV WD: 5 mm Px: 19 nm			
WP, FSWMg/M, Serir [0]. Phase map MAG: 13 Gist HV-25 kV WD-5 min Pst: 18 nm	WPJ FSW MgAl Swin [D] 2 μn [PFXMap MAG 15 0kc HV-25 kV WD.5 mm Pa 19 mm			

Magnesium

Aluminium

Nanohardness Testing

Use nanoindentation to further characterize weld

Fine indenter, 1 µm spacing without interference

1 indentation per second, 100×100 array in ~4 hrs

Develop FEA constitutive relationships from load-depth curves

Nanoindentation local stress-strain curve

Nanohardness Mapping

"Swirl" regions show strong variations in hardness, likely due to small grain size and intermetallic compounds

Response to Previous Year Reviewer Comments

How does this phase field model address grain size effects on corrosion?

- The present model does not address grain size effects
- We continue to investigate corrosion behavior, and will include grain size as we measure and understand its effect

Will the model address strength variations across the joint?

- Yes, these effects (strength, intermetallics) are part of the model
 Metrics for evaluating corrosion at joints are not well defined
- True, we are still investigating how corrosion affects joint strength
 In the corrosion model, does the electric potential field vary with time?
- Yes, it is re-calculated at each time step along with composition
 Any proposed future work is subject to change based on funding levels

Team Collaboration & Coordination

P.I. Adam Powell of WPI leads the technical team comprised of:

WPI PNNL

Brajendra Mishra Corrosion & Piyush Upadhyay Joint fabrication Qingli Ding mechanics exp'ts Darrell Herling & data mgt.

Kübra Karayağız – Modeling lead Erin Barker – Modeling consultant

ORNL Magna

Donovan Leonard – Materials Tim Skszek - Application, materials Characterization

Cost-Effective Collaboration

- Zoom at least monthly, sometimes weekly
- One annual two-day face-to-face Project Meeting (COVID-permitting)
- Team meetings at other events: TMS Annual Meeting, VTO AMR

Remaining Challenges/Barriers and Future Work

Complete corrosion model implementation and validation

- Accelerated 3-D Cahn-Hilliard model
- Add charge transfer resistance to electrochemistry model

Continue mechanics model using new characterization insights

- Understand fracture based on nanohardness maps
- Model: couple phase field corrosion with mechanical deformation
 - Understand corrosion in FSW joint microstructure
 - Model fracture of corroded sample
- Continue FSW development for strength and repeatability
- Model cyclic loading based on published models of FSW fatigue
- Any proposed future work is subject to change based on funding levels

Summary

Friction stir welding through 6022 Al into ZEK100 Mg

- Conducted extensive parametric study of FSW through AI into Mg
- Established protocol with good repeatability and strength

Nearly complete model of galvanic oxidation and pitting corrosion

- Corrosion is limited by cathode reaction
- 4-component Cahn-Hilliard formulation with water oxidation

Developing the ability to model microgalvanic corrosion reactions

Potential impact on VTO objectives: Method and open source tool for modeling in a key enabler for multi-material systems

Thank You

Technical Back-Up Slides

FSW 6022/ZEK100: 3 Phases Evolved, Beta, Gamma, Mg₂Si

- TKD confirmed Beta and Gamma present in swirled regions
- STEM/EDS shows Mg₂Si also present in these swirled regions (purple dots in combo map below)

