

Characterization, modeling, and mitigation of wear issues for conventional and stateof-the-art biomass comminution systems

Date: May 27, 2021

ORNL: <u>Jun Qu</u>, Kyungjun Lee, Xin He, and Jim Keiser ANL: <u>George Fenske</u> and Layo Ajayi INL: Jeffrey Lacey and Vicki Thompson Forest Concepts: David Lanning

forestconcepts

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Advance the state-of-the-art biomass size reduction equipment

O. Oyedeji, P. Gitman, J. Qu, E. Webb, ACS Sustainable Chemistry & Engineering 8 (2020) 2327.

FC recently developed Crumbler® Rotary Shear

- Benefits of rotary shear:
 - Narrower particle size distribution
 - Lower aspect ratio for high flowability
 - Less fines
 - Higher tolerance of high moisture variation
- Technical challenge:
 - Excessive tool wear in processing dirty feedstocks
- This work advances the state-of-the-art biomass size reduction technology by providing
 - Fundamental understanding of wear/failure mechanisms
 - Cost-effective wear-resistant tool materials
 - Optimized tool designs
- To gain
 - Improved tool life
 - Increased throughput
 - Reduced downtime and power consumption

Fundamentals of Wear Modes

Tribosystem analysis of hammer mill to correlate wear with inorganic particles

Characterization of extrinsic inorganic particles

Conventional measurement of inorganic content of biomass : ISO 176 and TAPPI T211 \rightarrow combust wood at 525 °C ASTM D1102 \rightarrow uses dry oxidation of wood at 580~600 °C ASTM D3174 \rightarrow produces ash of coal in furnace at 750 °C

(High-ash Pine residue)

Aspect ratio

0.39 < 0.79 < 1.00

0.2 0.4 0.6 0.8 Aspect ratio

1000

Inorganic compound diameter (µm)

1500

2000

15.0

7.5

5.0

2.5

0.0

0.0

62 < 193 < 1993 [µm]

Number fraction (%)

ORNL newly developed composition-preserving extraction and characterization method allows to discover the original morphology, size, and composition of extrinsic inorganic particles.

15.0

10.0

7.5

5.0

2.5

-0.0

2500

12.5 🔗

fraction

Volume

Intensity (a.u.)

Characterization of intrinsic inorganics

ORNL comprehensive characterization of intrinsic inorganics for pine anatomical fractions:

0.5

0.4

0.3

0.2

0.1

0.0

5

3

2

2.34

0.15

0.24

5.33

4.54

Cam White

wood

bium

4.35

3.50

Corn Needle Bark Twig

0.26

- Species identification by XRD
- Distribution inside biomass by EDS elemental mapping •
- Mechanical properties by nanoindentation •

Contributions of macro-level anatomical fractions and inorganics to erosive wear

Blasting wear tests using coupons machined off actual hammers (low carbon steel) Observations:

- Wear often increases along with the total ash content, *but not always*
- Wear is proportional to the percentile of extrinsic minerals in the total ash

Knowledge

Conclusions: Both intrinsic and extrinsic inorganic compounds are abrasive, but the extrinsic minerals are much more abrasive than the intrinsic inorganics.

Task 1 – Materials of Construction

Feedstock modifications for ash reduction for hammer mill

Effectiveness of Air classification, Size separation, and Water washing

Blasting wear tests using coupons machined off actual hammers (low carbon steel)

Wear Properties of Forest Residues

- Air classification and size separation were effective in reducing erosive wear
 - Removal of light fraction & fines
 - Modifications of forest residues led to 2X lower wear
 - Modifications of corn stover led to 4X lower wear
 - <u>Cost: ~\$0.84 per ton</u>
- Water washing had little effect in wear behavior
 - Major extrinsic inorganic compounds are water insoluble
 - Washing moved the minerals around, not removing them

Task 1 – Materials of Construction ⁹

Transitioned from hammer mill to knife mill in FY20 Q4

- A good portion of results from the hammer mill work have been transferred to the knife mill study:
 - Extrinsic and intrinsic inorganic species, mineral particle size & shape distributions,
 - Erosive wear model,
 - Feedstock modifications for ash reduction, and
 - Candidate alloys' wear resistance to 2-body abrasion.
- Tribosystem analysis determined different wear mechanisms for knife mill

Hammer Mill: Blunt blades Comminution mode: Crushing Wear modes: Erosive wear (dominant) + Abrasive wear (secondary)

Knife Mill: sharp blades Comminution modes: Cutting + Crushing Wear modes: 2-body/3-body Abrasive wear + Erosive wear (both important)

Knowledge

Selection of candidate coatings & surface treatments to mitigate wear

- Abrasive and Erosive wear can be mitigated by selecting tool materials with optimum mechanical properties
 - Increasing hardness lowers abrasive wear
 - Increasing fracture toughness and fatigue ductility – reduces erosive wear

Achieving all three attributes is a challenge and requires innovative material solutions.

	Nickel Boriding (coating)	Iron Boriding (case hardening)	Diamond-like carbon (DLC) coating	1245.4 HK	2000	
Hardness	Up to 1200 HV	1200-1900 HV	1000-2800 HV	10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	1800 - 52 52	
Thickness	Up to 100 µm	Up to 300 µm	Up to 100 µm	the second	ÝH 1600	
Microstructure	columnar	columnar	amorphous		ss 1400 -	
Process [Manufacturer]	Autocatalytic deposition (EXO) [UCT]	Deep case boriding (DCB) [IBC]	Plasma-enhanced chemical vapor deposition (PECVD) [NCT] and [C4E]	945.1 HM	1200 Har Kuoob Har 1000	1
Deposition Temperature	RT followed by crystallization at 385 °C	1000⁺ °C followed by heat treat/tempering	< 300 °C	<u>100 µm</u>	800	100

Task 1 – Materials of Construction ¹⁰

2E-03 Significantly improve the knife life at a small add-on cost

Thomas Wiley Mill Model 4	Cost	Cost increase
Current tool steel knife set (10)	\$2,150	Baseline
Fe-boriding a knife set (10)	\$120*	~7%

Iron boriding may potentially

*\$12 per knife for a batch of 500 knives

Task 1 – Materials of Construction11

- Knife mill: 2-body/3-body abrasive wear + erosive wear (both important)
- <u>Abrasion</u>: Iron boriding showed 300% improved abrasion resistance in standard 2-body abrasion tests at ORNL
- <u>Erosion</u>: Iron boriding showed 10% and 400% improved erosion resistance at 45 and 90 degrees, respectively, in erosion wear tests at INL.
 - More candidate coatings and surface treatments are being acquired and evaluated

Knife blade prototyping and testing

- INL is working with a knife mill OEM (Eberbach) to set up a state-of-theart small knife mill (model E3803) and acquire commercial knife blades.
 - Six rotary and six stationary knifes, can operate at variable rotating speeds, and is equipped with a precise control of the gap between the rotary and stationary blades.
- ANL and ORNL are working with coating vendors (IBC, NCT, and C4E) to fabricate prototyping knife blades using candidate coatings.
- INL is planning knife mill tests to validate the improved tool life and performance of the prototype blades.

	Blade materials
Commercial (Eberbach)	Standard tool steel
	17-4H stainless steel
	WC-Co composite
Candidate	Iron boriding (IBC) of tool steel
	Thin DLC (NCT) on tool steel
	Thick DLC (C4E) on tool steel

Forest Concepts DFO: Investigating and addressing the wear issue of the rotary shear biomass comminution system

- Relevance: Forest Concepts has recently developed (with significant BETO support) a state-of-the-art biomass comminution system – Crumbler® rotary shear with benefits of producing precision feedstock of narrower particle size distribution, lower particle aspect ratio for higher flowability, and less fines, and higher tolerance of high moisture variations.
- **Current limitations: Significant wear** of the cutter-spacerclearing plate assembly in processing dirty biomass feedstocks (e.g., logging residues, ag residues, municipal solid waste) causing lower than desired cutter life. Target in excess of 1,200 operating hours, **but actually as few as 200 hours in particularly dirty woodchips.**

Objectives:

- Gain mechanistic insights for the wear issues experienced by the Crumbler® rotary shear comminution system,
- Provide combined materials and design solutions to improve the tool lifetime and processing efficiency and reduce downtime for higher economics, and
- **Share** the fundamentals and mitigations with the biomass industry.

DFO with Forest Concepts

Distinguishing the wear mechanisms among biomass comminution systems

• **Different wear mechanisms have been identified** based on tribosystem analysis (relative motions, contact mechanics, operating conditions, etc.) and worn component characterization

Hammer Mill

Blunt blades @ high speed → Crushing

Erosive wear (dominant) + 2-body/3-body Abrasive wear (secondary)

Knife Mill

Sharp blades @ medium-high speed → Cutting + Crushing

2-body/3-body **Abrasive** wear + **Erosive** wear (both important, *depending on operation conditions*)

Crumbler® Rotary Shear

Sharp edges/corners @ low speed → Cutting/Shearing

2-body/3-body **Abrasive** wear (dominant) + chipping (secondary) **Erosion negligible*

Revealing the cutter-woodchip interface phenomena

• High-speed camera video clip catching the moment of the cutters shearing/crashing a woodchip on a Crumbler® at FC

Photron Nova S12 high speed camera. Sample Record Rates: 1024 x 1024 @ 12,800 fps; Light Sensitivity: ISO 64,000 up to 500,000; Minimum Shutter: 200 ns

Extrinsic mineral particles of woodchips and their impact on cutter wear

• Extrinsic mineral particles

Extrinsic mineral particles cause 2-body/2-body abrasive wear

- Mineral particles of 70-200 µm are trapped in the gap between cutters and crushed into smaller ones
 - 70-200 µm-sized minerals decreased from 21 wt.% to 6 wt.%
 - <30 µm-sized minerals increased from 22 wt.% to 40 wt.%

Improve cutter life by using more wear-resistant **alloys**

 For Thick Cutter: D2 tool steel ranks on the top with <u>2X better wear resistance</u> at <u>1.25X cost compared with the baseline A2 tool steel</u>

ASTM G-174 Standard 2-Body Abrasion Test

For thin cutte	Wear rate (x10 ⁻³ mm ³ /Nm)	Potentially improved life	4.25"-dia. cutter cost*	Cutter cost factor	
Baseline (current) 1095 steel		3.83	Baseline	~\$18	Baseline
Baseline (previous)	A2 tool steel	1.83	~2.1x	~\$31	~1.7x
Condidate allova	D2 tool steel	0.93	~4.1x	~\$54	~3x
Candidate alloys	M2 tool steel	0.53	~7.2x	~\$62	~3.5x
For thick cutt	er (3/16")	Wear rate (x10 ⁻³ mm ³ /Nm)	Potentially improved life	4.25"-dia. cutter cost*	Cutter cost factor
For thick cutt Baseline	er (3/16") A2 tool steel	Wear rate (x10 ⁻³ mm ³ /Nm) 1.83	Potentially improved life Baseline	4.25"-dia. cutter cost* ~\$40	Cutter cost factor Baseline
For thick cutt Baseline	er (3/16") A2 tool steel D2 tool steel	Wear rate (x10 ⁻³ mm ³ /Nm) 1.83 0.93	Potentially improved life Baseline ~2x	4.25"-dia. cutter cost* ~\$40 ~\$50	Cutter cost factor Baseline ~1.25x
For thick cutt Baseline Candidate alloys	er (3/16") A2 tool steel D2 tool steel M2 tool steel	Wear rate (x10 ⁻³ mm ³ /Nm) 1.83 0.93 0.53	Potentially improved life Baseline ~2x ~3.5x	4.25"-dia. cutter cost* ~\$40 ~\$50 ~\$76	Cutter cost factor Baseline ~1.25x ~1.9x

DFO with Forest Concepts

Improve cutter life by using more wear-resistant **COatings**

- Fe-boriding: 2-20X tool life extension with gradual degradation
- Thin DLC coating: 3 orders of magnitude lower wear rate! (But would such a thin coating last long enough? TBD in rotary shear)
- <u>Thick DLC coating</u>: in process to be acquired and evaluated
- D2 tool steel to be explored as the substrate for potential cost reduction

For thin cutter (1/16")		Wear rate (x10 ⁻³ mm ³ /Nm)	Potentially improved life	4.25"-dia. cutter cost*	Cutter cost factor
Baseline (1095 steel)		3.83	Baseline	~\$18	Baseline
Candidate coatings	Fe-borided A2	0.78	~5x	~\$43	~2.4x
	Fe-borided M2	0.19	~20x	~\$74	~4.1x
	DLC-coated M2	0.0008	>4000x	~\$63	~3.5x

For thick cutter (3/16")		Wear rate (x10 ⁻³ mm ³ /Nm)	Potentially improved life	4.25"-dia. cutter cost*	Cutter cost factor
Baseline (A2 tool steel)		1.83	Baseline	~\$40	Baseline
Candidate alloys	Fe-borided A2	0.78	~2x	~\$52	~1.3x
	Fe-borided M2	0.19	~10x	~\$88	~2.2x
	DLC-coated M2	0.0008	>2000x	~\$80	~2x

*Coating cost estimates based on batches of 100 parts

DFO with Forest Concepts

ASTM G-174 Standard 2-Body Abrasion Test

FEA modeling to calculate contact stresses at the cutting interfaces

Comparison of cutter tooth designs

- In general, the new square corner (DZ) tooth design produced a lower max contact pressure than the original tooth design (with a few exceptions), suggesting a longer tool life.
 - Exceptions might reflect effects from other aspects such as the woodchip's thickness and its relative location to the cutter assembly.

(mm) of Rupture (MPa) Contact Pressure (MPa)	Pressure (MPa)
	4000
4 Yellow Birch, 12% 114 1249	1038
5 Red Oak, 12% 75 770	627
$6 \qquad \frac{1/16^{\circ}}{(1.6 \text{ mm})} \qquad 6 \text{ White Cedar, green} \qquad 29 \qquad 397$	486
13 Douglas-fir, 12% 85 861	528
14Douglas-fir, green53678	356
7 Yellow Birch, 12% 114 815	276
8 6x6x15 Red Oak, 12% 75 280	263
9 White Cedar, green 29 197	66
10 (6.35 mm) Yellow Birch, 12% 114 1065	1284
11 Red Oak, 12% 75 1093	1209
12 10x20x50 White Cedar 29 729	384
15 Douglas-fir, 12% 85 810	996

Cutter prototyping and testing

- ORNL and ANL are working with a cutter manufacturer (DST) and coating vendors (IBC and NCT) to fabricate prototype cutters using the DZ tooth design and candidate wear-resistant coatings.
- FC is planning to test the prototype cutters side-by-side with the baseline cutters on a rotary shear to validate the improved tool life and performance.

	Thick (3/16") cutter	Thin (1/16") cutter
Commercial (FC)	A2 tool steel	1095 carbon steel
Candidate	D2 tool steel (DST)	M2 tool steel
	Iron boriding (IBC)	Iron boriding (IBC)
	Thin DLC (NCT)	Thin DLC (NCT)

Analytical Solutions for Wear/Recession of Leading Edges – Dependence on Feedstock, Material, and Processing Properties

• Hammer mill

$$\mathbf{A}_{\perp} = \Delta \boldsymbol{Q}_{erosion} * 2\pi r * \boldsymbol{\rho}(r)$$

$$\Delta \boldsymbol{Q}_{erosion} = \Delta \boldsymbol{Q}_{\boldsymbol{D}} + \Delta \boldsymbol{Q}_{\boldsymbol{C}}$$

 Δ_{\perp}

$$= \Delta Q_{abrasion} * \mathcal{X}$$
$$\Delta Q_{abrasion} = \frac{\left[(D/2)^2 \right]}{2} (\alpha - \sin \alpha) * f(\Delta \theta, r)$$

$$\Delta_{\perp} = \Delta Q_{abrasion} * \mathcal{X}$$

$$\Delta Q_{abrasion} = \frac{\left[(D/2)^2 \right]}{2} (\alpha - \sin \alpha) * \mathcal{L}(\Delta \theta, r)$$

Material Attributes

b	Manson-Coffin fatique ductility exponent
٤ _f	Manson-Coffin fatigue ductility coefficient
Ē	target material Young's modulus
Н	target material hardness
K _c	critical stress intensity factor
R	target material fracture toughness

Process/Design Parameters

U	particle impact velocity
α	particle impingement angle
ro	Outer radius of feedstock zone
ri	Inner radius of feedstock zone
L	Length of hammer mill zone
φ	Tool Leading Edge Angle
т	Residence time
FR	Feed Rate
AC	Ash Content
Ν	Rotational Speed
Νο	Bale Ash Density
λ	Exponential constant

Mathematical Models of Erosion and Abrasion Relate Volume of Material Lost to Material Properties and Kinematic Conditions

Validation of Erosive Wear Model – **Bench Scale Simulation**

Photo of grit blaster nozzle used to simulate abrasive wear by biomass feedstock (courtesy INL [22])

80

100

60

Angle of Incidence - degrees)

George Fenske and Layo Ajayi, "An Analytical Model of Erosive Wear of Biomass Comminution Components", AN/AMD - 20/1

Validation of Erosive Wear Model – Hammermill Components

Illustration of QbD process for modeling component wear as functions of feedstock CMAs, hammer CMAs, and unit processing parameters, CPPs to wear (CQAs) Illustration of the Vermeer Stage 1 hammer mill used to grind bales into loose feedstock.

George Fenske and Layo Ajayi, "Application of an Erosion Wear Model to Predict Wear of Hammer Milling Components",, AN/AMD – 20/2

Validation of Erosive Wear Model – Hammermill Components

George Fenske and Layo Ajayi, "Application of an Erosion Wear Model to Predict Wear of Hammer Milling Componenets", AN/AMD – 20/2

Analytical Predictions of Hammer Wear

- Experimental observations indicate wear is essentially limited to outer 5 cm of the hammer. In this region the hammer angle (of the fresh hammer) remains constant at 75°.
- The model predicts the recession is proportional to the ash density which is a function of position (radius)

$$\Delta_{\perp} = \Delta \boldsymbol{Q} * \boldsymbol{\rho}(\boldsymbol{r}) * 2\boldsymbol{\pi} * \boldsymbol{r}$$

Analytic Predictions of Hammer Wear

Sufficient flexibility in model parameters for reliable simulation of erosive wear.

Potential applications include:

- Impact of hammer design (hammer face angle)
- Impact of rotational speed on hammer wear
- Impact of material properties (hardness, toughness, fatigue ductility) on wear and recession
- Impact of feedstock variability (ash content, ash size and shape) on wear

0.91

021

091

0.51

130

150

011

Application of Erosion Wear Model

Impact of material properties (hardness, toughness, fatigue ductility) on wear and recession

	€ = 0.5				ε = 1.0	
Fracture						
Toughness	4 GPa	8 GPa	12 GPa	4 GPa	8 GPa	12 GPa
5 kJ/m ²	0.168	0.102	0.077	0.056	0.034	0.025
10 kJ/m2	0.104	0.063	0.047	0.034	0.021	0.016
20 kJ/m2	0.064	0.039	0.029	0.021	0.013	0.010
30 kJ/m2	0.048	0.029	0.022	0.016	0.010	0.007
40 kJ/m2	0.040	0.024	0.018	0.013	0.008	0.006
50 kJ/m2	0.034	0.021	0.015	0.012	0.007	0.005

Impact of rotational speed on hammer wear

Rotational Speed (rpm)	Hammer Recession Δ_{\perp} (mm)
600	4
750	9
900	18
1050	33
1200	55

Impact of hammer design (hammer face angle)

Face Angle φ (deg)	Hammer Recession Δ_{\perp} (mm)
0	18
15	18
30	18
45	16
60	13
75	8

Pivot to Knife Milling Physical Modeling of Knife Milling

Knife mill: abrasive wear + erosive wear (both important)

Illustration of knife milling operations

Size reduction during knife milling

Abrasion/erosion of knife edge opens gap between knives and changes the process of deformation from cutting to shearing to tearing

First Step in Calculating Abrasive Wear

For a given particle size and load, calculate indentation depth and wear volume produced per unit sliding distance

Calculated indentation depths as a function of load for elastic and plastic behavior

Second Step: Apply Processing Parameters to Model Kinematics of Components

Engineering Equations – relating constitutive wear rate to processing parameters

- Work in-progress
 - Calculate average load, W, applied to particles based on chip strength and ash content and chip size

$$\Delta V(r \rightarrow r + \Delta r) = \Delta Q_{ab}(m^3/particle) * \# (particles)$$

$$\Delta V = \frac{\left[(D/2)^2 \right]}{2} (\alpha - \sin \alpha) * \mathcal{L}(\Delta \theta, r) * \mathcal{X} * 2\pi r \Delta r$$

$$\# particles = \mathcal{X}(particles/m^2) * \Delta a \qquad \Delta a = 2\pi r \Delta r$$

$$\# particles = \mathcal{X}(particles/m^2) * 2\pi r \Delta r \qquad X = density of particles per unit area$$

$$\Delta V(r \rightarrow r + \Delta r) = \frac{\left[(D/2)^2 \right]}{2} (\alpha - \sin \alpha) * 2\pi r \mathcal{L}(\Delta \theta, r) * \mathcal{X} 2\pi r \Delta r$$

$$\Delta V(r \rightarrow r + \Delta r) = 2\pi r \Delta r \Delta_{\perp}$$

$$\Delta V(r \rightarrow r + \Delta r) = 2\pi r \Delta r \Delta_{\perp}$$

$$\Delta V(r \rightarrow r + \Delta r) = 2\pi r \Delta r \Delta_{\perp}$$

$$\alpha = 2 \cos^{-1}(1 \frac{2h}{D})$$

$$\mathcal{L}(\Delta \theta, r) = relative sliding distance between counter rotating cutters$$

Applications of Analytical Models

• Hammer mill

$$\mathbf{A}_{\perp} = \Delta \boldsymbol{Q}_{erosion} * 2\pi r * \boldsymbol{\rho}(r)$$

 $\Delta \boldsymbol{Q}_{erosion} = \Delta \boldsymbol{Q}_{\boldsymbol{D}} + \Delta \boldsymbol{Q}_{\boldsymbol{C}}$

$$\Delta_{\perp} = \Delta Q_{abrasion} * \mathcal{X}$$
$$\Delta Q_{abrasion} = \frac{\left[(D/2)^2\right]}{2} (\alpha - \sin \alpha) * f(\Delta \theta, r)$$

Rotary Shear

$$\Delta_{\perp} = \Delta Q_{abrasion} * \mathcal{X}$$
$$\Delta Q_{abrasion} = \frac{\left[(D/2)^2 \right]}{2} (\alpha - \sin \alpha) * \mathcal{L}(\Delta \theta, r)$$

Biomass Conversion

- Predicting wear & sharpness of components - maintenance & replacement
- Predicting performance (efficiency & quality)
- Design of components shape & selection of materials of construction
- Techno-economic analysis ROI
- Impact of feedstock variability on wear & performance
- Wear in Alternative Comminution (Sizing) Operations
 - MSW design of comminution systems
 - Polymer/plastic recycling
 - Battery recycling
 - Ore processing

.

Technical Approach: ORNL, ANL, and INL, in collaboration with industrial partners (Forest Concepts, Eberbach, and coating vendors), are working on various biomass size reduction systems to

- fundamentally understand their wear mechanisms,
- develop advanced tool materials and/or designs,
- fabricate and test prototype high-performance tools, and
- generate predictive wear models.

Impact: Provide fundamental understanding of the wear mechanisms and recommend mitigations for improved economics by increasing the throughput and tool life and reducing the downtime and power consumption.

Future Work:

- Complete the current studies for knife mill and rotary shear with demonstration of improved economics and
- Identify other biomass processing systems that experience wear issues and apply the materials approach to address them.

Thank you

energy.gov/fcic

