Zero-Emission Cargo Transport II: San Pedro Bay Ports Hybrid & Fuel Cell Electric Vehicle Project

> Presenter: Seungbum Ha South Coast Air Quality Management District June 23, 2021

> > [Project ID # elt158]

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Timeline

- Project Award: 10/1/14
- Contractor Kickoff: 12/16/15
- Project Completion: 2/28/23

Contractors & Projects

- <u>BAE/CTE:</u> Fuel cell range extended drayage truck
- <u>TransPower</u>: Fuel cell range extended drayage truck
- <u>U.S. Hybrid:</u> Fuel cell powered drayage truck
- <u>Hydrogenics</u>: Fuel cell range extended drayage truck
- <u>BAE/GTI</u>: CNG hybrid with Near Zero CNG Engine

Barriers & Challenges

- Fueling Infrastructure: Availability and location
- Costs: Fuel Cells, batteries and infrastructure
- System Integration: Safe and efficient deployment of the technology Barriers

Budget

- DoE: \$10,000,000
- Funding partners: \$7,467,473
- Contractors: \$3,075,841
- Total Cost:\$20,543,314

Relevance: Goals & Objectives

2020/2021 Objectives

- Complete vehicle demonstration and data collection & analysis
- Complete development of Cummins fuel cell truck

Results

- Six demonstration trucks including fuel cell range extended and CNG hybrid truck completed demonstration
- Portable hydrogen fuel onsite supported demonstration trucks
- Debugging and improvement while demonstrating by lessons-learned Vehicle performance data provided from demonstration trucks

Impact

 Pushing Zero Emission Technology and Industry Envelope by Demonstrating First Fleet of FCEV's in Drayage Service in California

Remaining Challenges & Barriers

Fueling Infrastructure - Availability and location

- All temporary hydrogen fueling is in place and being used for the demonstration
- Secure hydrogen fuel supply will be a challenge South Coast AQMD is working with partners on a solution (Renewable hydrogen station, Mobile refueler, retail stations)

System Integration: Safe and efficient deployment of the technology

- Six of seven vehicles have been demonstrated including CNG hybrid truck
- Design improvement and system optimization
- Analyze data collected and secure reliability
- Build a solid commercialization pathway

Costs and Application

- Costs will remain a challenge for the near and mid term
- Penetration into mid or long range application (currently ~200 miles range)

Approach

Vehicle Development and Deployment

	-					FUEL CELL	TRUCKS		PHET/CNG
Basic Research Lab Bench	Demos System/	Demos	te Pre- Commercial Demos		TransPower	Hydrogenics (Cummins)	US Hybrid	BAE/Ke	enworth
Proof-of- Concept	Component Integration	Acceptance Proof-of-	Market Readiness	# of Vehicles	2	1	2	1	1
Concept	Proof-of-	Product	Proof-of Commercial- ization	Platform	International	Freightliner	Kenworth T800	Kenworth T370	Kenworth T680
	Technology			Mfg: Fuel Cell / APU	Hydrogenics	Hydrogenics	PureMotion	Ballard	CWI L9N NZE
				Fuel Cell Power	60 kW	60 kW	80 kW	85 kW	n/a
				Battery Capacity	125 kWh	100 kWh	26 kWh	100 kWh	100 kWh
		Battery Chemistry	Li-ion	Li-ion	Li-ion	Li-ion	Li-ion		
				Traction Motors	2x 150 kW	1x 320 kW	1x 320 kW	1x 420 kW	1x 420 kW
				Range (per fueling)	200 miles	150 miles	150-200 miles	112 miles	150 miles
				Fuel Cap.: H2 (kg) / CNG (DGE)	27 kg @350 bar	30 kg @350 bar	20 kg @350 bar	30 kg @350 bar	45 DGE
					Deployed		Deployed	Deployed	Deployed

In-use Demonstration and vehicle performance Analysis

TCO Analysis and Commercialization Roadmap

System Design

- Two electric motors with 270 kW combined power output comparable to a current Class 8 truck engine's power output.
- 100 kWh Li-ion batteries,
- 85 kW (net) fuel cell system
- Hydrogen storage capacity is 30 kg (25 kg usable),

Target Performance

Performance Parameters	Expected Performance*	
Fuel Economy	4.5 to 6.0 mi/kg	
Hydrogen Storage	30 kg storage and 25 kg usable	
Range	112 miles	
Gradeability and Start-ability	6.5% grade at 35 mph	
	5.0% grade at 40 mph	
	15 second start-ability at 30% grade	
Top Speed	70 mph	
Operating Temperature	-4 F (-20 C) to 115 F (46 C)	
* Note: All performance parameters tested with a vehicle GVW of 65,0000 lbs.		

Vehicle In-service Operation

- The vehicle was demonstrated and evaluated over a 24-month deployment on regularly scheduled routes serving outlying communities off the I-710 freeway in the ports and in the I-710/CA-60 and I-10 corridor in Los Angeles
- NREL managed the data collection process for all ZECT II projects
- The performance analysis of the Kenworth truck initially focused on building out summary data and overview plots
 - Detecting overall trends and spotting days of service, more specific to the operator, TTSI

Fuel Economy

Fuel cell truck has a higher efficiency compared to the baseline vehicles

Performance for each Powertrain components was analyzed to optimize system control

Comparison to conventional Diesel Truck

Metric	Units	Baseline* Conventional	Kenworth ZECT
Date range		2014–2015	6/13/2019 - 1/15/2021
Number of total days recorded	#	557	103
In-service days with >5 miles	#	-	56
Max daily distance	mi	20 2	245.2
Avg daily distance	mi	127.9	53.9
Avg operating time (key-on)	hr	10.1	6.9
Avg driving time	hr	4.5	2.6
Avg speed	mph	14	8.4
Avg driving speed (speed>0)	mph	26.5	20.0
Kinetic intensity	1/mi	0.64	1.1
Avg stops/day	#/day	124.9	176.1
Avg stops/mi	#/mile	1.38	4.7
Median stop duration	sec	40.8	7.4
Avg daily fuel use (H_2)	kg	00	8.4
Avg daily fuel use (diesel equiv.)	gal	23.7	7.4
Avg fuel economy (diesel equiv.)	mi/gal	5.7	6.5
Avg fuel cell efficiency	%	-	52.1%

10

*ZECT II milestone report: Baseline Vehicle Data Collection and Analysis Report – Port Drayage

Conclusion

- The largest strides in Technology Readiness Level (TRL) were gained by the overall vehicle design and architecture. The hydrogen fuel cell drayage truck TRL prior to this project was at a strong Level 4 with several proof-of-concept vehicles constructed by previous researchers. With this demonstration project, the research Team believes it has advanced the TRL of the hydrogen fuel cell drayage truck to a Level 7 (out of 10) with prototype demonstrations in operating environments.
- Lack of standardization in componentry specific to zero-emission technologies is a high barrier to broad adoption of these technologies
- Improvements to packaging of the battery, fuel cell, and hydrogen storage systems, Improving vehicle control strategies to increase efficiency, and Improving reliability across the system
- Deploying a larger numbers of vehicles
- Ensuring reliable fueling

CNG Range-Extender Truck Layout

Major Components	Detailed Information
Chassis	Kenworth T680 Daycab
Control System	BAE
Traction Motor	AM Racing, 2 x 160kW
Energy Storage System	XALT, 100kWh, 650V
Range Extender	Cummins-Westport L9N, 230kW with
	BAE integrated starter-generator (ISG)
Transmission	4-speed Eaton Automated-Manual
	(AMT)

Key Engine Attributes

- Certified to CARB's Lowest Optional Low NOx Standard (0.02g/bhp-hr)
- 4 cycle, spark ignited, in-line 6 cylinder, turbocharged, CAC
- Displacement 8.9 Liter (540 cu. In.)
- Exceeds 2017 EPA GHG requirements
- 2018 On-board Diagnostic (OBD) compliant
- Dedicated 100% natural gas engine
- Peak rating: 320 hp, 1000 lb-ft

South Coast

Target performance

Performance Parameter	Expected Performance	Observed Performance	
Range	150 miles	284 miles	
Top Speed	62 mph	65 mph	
Gradeability	6.5% grade at 20 mph	~8.5%+ at 20 mph*	
	5% grade at 30 mph	~5.5%+ at 30 mph [*] *(simulation results)	
All-Electric Range	20 miles or 1 hour	26 miles	
Startability	30% (stretch goal)	20%	

Around the Steepest climb on the Vincent Thomas Bridge Ca

Navigate the steep approach to a couple of bridges at POLA while carrying 80,000 lbs of cargo.

Drayage service to Inland empire warehouses and near the port operation

Vehicle In-service Operation

- The vehicle has accumulated 8,835 miles of commercial service through the conclusion of the project in November 2020
- Data was tracked using the Aptiv Qualifier System Validation Service and transferred to PACCAR. The data was accessible to CALSTART and NREL. CALSTART has performed the analysis of operational data
- CALSTART has performed in-use emissions testing with a Portable Emissions Measurement System (PEMS) supplied by Sensors
- HECT vehicle has met or exceeded its overall performance attributes expected of a high-volume production vehicle
- A few areas where opportunities for improvement exist are as follows:
 - High-voltage (HV) fuse reliability for accessory loads
 - Transmission shifting
 - Electrified accessories

PEMS testing - Average Daily Fuel Efficiency and Fuel Consumed

	Total Days in Operation	Avg. Fuel Consumed	Avg. Efficiency
Plug-In Hybrid	64 Days	20.72 dge	6.62 mi/dge
CNG	38 Days	15.36 dge	5.1 mi/dge
Diesel	52 Days	n/a	n/a

- Performed the standard drayage duty cycle up to 284.61 miles.
- Averaged more miles per diesel-gallon equivalent than the baseline CNG over the course of the demonstration period
- Performed averagely on the emissions test.
- The demonstration vehicle was very popular with the drivers.
- Further testing under better operating conditions would be ideal.

Commercial Service Operation

- The duty cycles in commercial operation were measured and characterized by CALSTART
- The truck reliability was not without an issue, but the problems were not of systemic nature, and related to the novel components (sensors, fuses, electric air compressor)
 - Range 230kW CNG engine can generate enough power to sustain the vehicle at 60mph
 - Startability successfully launched on the 20% grade while loaded to the target weights
 - Gradeability perform sustained hill climbs
 - Powertrain Systems Vehicle Acceleration Through Gears

Vehicle	Transmission	Rear Axle Ratio:1	GVCW (lb)	0-30mph (s)	0-60mph (s)	45-60mph (s)	Thru Intersection (s)
HECT	4-speed AMT	5.38	78,140	16	74	37	12
1706 – 430 hp MX-11	12-speed PACCAR AMT	2.85	76280	25	79	33	17

- Electrical/Electronics EMI/EMR, vibration & environmental testing, salt fog, water intrusion, freeze-thaw cycle, gravel, UV and fluid compatibility, low voltage systems, and high voltage specific test
- Aerodynamics
- Noise, Vibration & Ride
- Structural Evaluation & Durability
- Thermal Management

Vehicle In-service Operation

- The vehicle has accumulated 8,835 miles of commercial service through the conclusion of the project in November 2020
- Data was tracked using the Aptiv Qualifier System Validation Service and transferred to PACCAR. The data was accessible to CALSTART and NREL. CALSTART has performed the analysis of operational data
- CALSTART has performed in-use emissions testing with a Portable Emissions Measurement System (PEMS) supplied by Sensors
- HECT vehicle has met or exceeded its overall performance attributes expected of a high-volume production vehicle
- A few areas where opportunities for improvement exist are as follows:
 - High-voltage (HV) fuse reliability for accessory loads
 - Transmission shifting
 - Electrified accessories

Conclusion

- Successful demonstration of integrating mature technologies into a viable near-zero emission drayage truck, with a limited zero-emission capability
- While it is expected that the drayage transportation will transition to zero-emission in the long-term, CNG Hybrid can bridge the cost and performance barriers associated with currently contemplated zero-emission technologies
- The great performance of the vehicle and feedback from the fleet suggests that the technology has a potential for good acceptance amongst the operators and quick transition
- Fuel economy and emissions measured during the limited testing proved inconclusive, and it is recommended that more focused effort is put forth towards characterization of the CNG-hybrid operation

Commercialization Roadmap

Pros and Cons of diesel, CNG, battery electric, and hydrogen fuel cell heavy-duty trucks

	Pros	Cons
Diesel	 The most common fuel type for decades, so capital costs are low and fueling locations are common Range only limited by driver's 10 hour driving limit 	 Biggest polluter of particulate matter and greenhouse gases Loud and odorous operation Relatively high maintenance costs Being phased out by California and port regulations
CNG	 Less emissions than diesel Quick refill like diesel ~ 300 mile range Fueling infrastructure relatively common Fuel slightly less expensive than diesel Quieter operations 	 Not zero-emission Although highly commercialized now, gained a reputation for not being reliable when first entering the market Emits about 75% as much CO₂ and 10% as much NO_x as diesel trucks
Battery Electric	 Zero tailpipe emissions Ability to opportunity charge while idling Quiet operations Reduced maintenance costs Torque / acceleration 	 Slow charging times Limited range currently up to 150 miles High MSRP Installing charging infrastructure can be expensive, time consuming, and takes up space Heavy battery can lead to weight issues (maximum gross vehicle weight limit of 82,000 lbs)
Hydrogen Fuel Cell	 Zero tailpipe emissions Quick refueling (10 minutes) Expected 300+ mile range Quiet operations Reduced maintenance costs Possibility for extended range with 700 bar fueling Torque / acceleration 	 Least commercialized option with fewest vehicles on the road High MSRP High fuel cost Fueling infrastructure not commonly available

Commercialization Roadmap

Comparison of key performance metrics for diesel, CNG, hydrogen fuel cell, and battery electric heavy-duty trucks

	Diesel	CNG	Hydrogen Fuel Cell	Battery Electric
MSRP	\$120,000	\$202,624	\$520,000	\$340,000
Miles / diesel gallon equivalent (DGE)	6.3	5.7	6.0 / kg H ₂	2.6 kWh / mile
\$ / DGE	\$3.53	\$3.00	\$10.90 / kg H ₂	\$0.10 / kWh

Role of Hydrogen & CNG(Hybrid) Trucks

- Hydrogen: quick refueling, an ability to scale the infrastructure to serve many vehicles, and a much desired longer range than current BEV technology
- CNG(Hybrid): The significant progress of the CNG technology has made over the past decade reliability and performance of engine with low emission. Many fleets now operate CNG trucks and some even prefer the technology over diesel because it can meet the required duty cycles with a quieter, cleaner, and odorless ride.

Commercialization Roadmap

Emission reduction Impact

	Zero-Emission Sales By 2035	Scenario Basis
Scenario 1	100%	Governor Newsom's Executive Order (N-79-20) mandating 100% of zero-emission drayage trucks by 2035.
Scenario 2	75%	An intermediary outcome between Scenario 1 and Scenario 3 where 75% of sales of zero-emission drayage trucks are realized by 2035.
Scenario 3	40%	The Advanced Clean Truck Rule's mandate of 40% sale of zero-emission Class 7-8 Tractors by 2035.

Future Research

- **1.** Collect real operation data from demonstration
 - Continue demonstration to collect more data
 - Analyze vehicle performance data by NREL
 - GPS data,
 - average daily VMT,
 - Kinetic intensity
 - Fuel economy
 - Compare to conventional truck data with similar operating route

2. Analyze Total Cost of Ownership

- Vehicle, Fuel, Maintenance cost
- Assessment of infrastructure cost
- Assessment of operating penalty (time, weight)

3. Study a roadmap for commercialization roadmap

- Market development strategy
- Leverage the knowledge from this demonstration for other projects
- Accelerate participation of OEMs

- Six vehicles including Two fuel cell trucks from TransPower, Two from US Hybrid, one from Kenworth and one CNG Hybrid truck from Kenworth completed demonstration
- Hydrogenics(Cummins) truck will be deployed in Q4 2021
- Demonstration has been impacted by COVID-19
- Continue demonstration and data analysis for comparison to conventional diesel trucks
- TCO analysis and commercialization roadmap will be analized
- Longer range truck and more OEMs' participation is required

