

Development and Demonstration of Mediumand Heavy-Duty PHEV Work Trucks

Principal Investigator: John Petras

Organization: Odyne Systems, LLC

Date: June 22, 2021

Project ID: elt094

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Timeline:

Start Date: January 19, 2017

Completion Date: January 31, 2023

Percent Complete: 75%

Budget

Total project funding: \$6,955,281

• DOE Share: \$2,149,644

FFRDC Share: \$ 782,549

Contractor Share: \$4,023,088

FY20 DOE Funding: \$ 367,416

• FY21 DOE Funding: \$ 378,133

Includes FFRDC

Barriers

- Fuel efficiency of Medium/Heavy-duty work trucks
- Integration of Driving and Jobsite electrification of Medium/Heavy-duty work trucks
- Over 50% of Work Truck fuel use occurs during stationary operation – not addressed by traditional Hybrid solutions

Project Partners

- Odyne Systems Project Lead
- Freightliner Trucks
- Allison Transmission
- Ricardo Engineering
- National Renewable Energy Laboratory
- Oak Ridge National Laboratory
- South Coast Air Quality Management
- 2 Utilities TBD

Relevance / Objectives

Overall Objectives

- To develop and demonstrate an advanced Plug-in Hybrid Electric (PHEV) Medium-Heavy Duty Work Truck
 - With greater than 50% reduction in fuel consumption when compared to a conventional diesel vehicle baseline

Relevance

- Work trucks are unique in the proportion of fuel used during stationary activity and the diversity vehicle design and jobsite equipment utilized to fulfill their missions
- Most hybrid work focuses on driving, ignoring the high stationary fuel use of the vocational market
- This project will develop and demonstrate a modular PHEV Work truck solution which meets the needs of the work truck user while demonstrating a 50% reduction in full-day fuel use

Milestones

Milestones: Period 2	Date	Status 5/14/21
Prototype Vehicle Functional Validation	October, 2019	Complete
Hardware in the Loop (HIL) Powertrain Verification	February, 2020	Complete
Prototype Vehicle Performance Validation (Go-No Go)	May, 2021	Finalizing Report
Evaluation Fleet Build and Delivery	December, 2021	On Track

Approach:

Plug-in hybrid propulsion+ work site idle reduction

Hybrid Powertrain

Modular Design

Multiple Vocations

Minimally Intrusive

Hybrid Power through existing PTO port No Changes to Base Powertrain Allison Approved – Retains Powertrain Warranty

Flexible

60 kW of hydraulic/pneumatic power 15 kW of 120/240VAC exportable power Multiple OEM and Application platforms - Same base hybrid system

Technical Accomplishments Powertrain Optimization

- Oak Ridge Simulation model was utilized to evaluate multiple iterations of refined Driving Strategies
- Oak Ridge Hardware-in-the-Loop (HIL) Powertrain Dynamometer was utilized to validate the simulation and fine tune the driving strategies
- Primary features resulting in improved fuel economy included:
 - Increasing speed (MPH) range of Torque Assist
 - Increasing Peak Torque Available
 - Balance mode, reduce engine load by the amount hybrid motor is providing
 - Idle Neutral

Results

- The combination of features above predicted fuel economy improvements of 34-51% over baseline diesel
- Two strategies were chosen for chassis dyno test
 - Aggressive All the features evaluated
 - Mild Closer to charge sustaining strategies with lower battery use per mile

Hybrid Powertrain on Oak Ridge HIL Powertrain Dyno

Technical Accomplishments Finalize Design and Build Test Truck

- Design and integration into Test Chassis has been completed
 - Modular integration: 3 primary, 1 optional
- Final Subsystem Specifications:
 - 17.7 / 35.4kWh RESS
 - 250 Nm, 71 kW Peak, 150 Nm, 50 kW Continuous Motor Torque/Power
 - 12 kW Exportable Power (120V/240V)
 - 4 kW DC/DC 12V support
 - 3.3 kW J1772 Level 2 Charging
 - Independent WEG Cooling System
 - ▶ 17.000 btu Engine-off HVAC

Plan View – Test Chassis Model with Hybrid modules

Side view of completed test chassis

Top view of completed test chassis

Technical Accomplishments NREL System Test

- The Test Truck was tested at the NREL ReFUEL Dynamometer test facility
 - ► Mild strategy yielded 9.5 23% improvement in fuel economy
 - ▶ Aggressive strategy yielded 69 75 % improvement in fuel economy
 - Stationary Work Cycle: Hybrid system yielded 80-99% improvement in fuel consumption and emissions
 - Worst case scenario assuming all energy derived from field recharge

NREL Drive Cycle Test Res	erilte

Strategy	Duty Cycle	Distance [mi]	Fuel Used [gal]	Fuel Used Per Mile [gal]	MPG	MPG Improve ment	Energy Used Per Mile [kWh]
Conventional	UDDS	5.503	0.892	0.162	6.174		0.000
Hybrid Mild	UDDS	5.498	0.813	0.148	6.762	9.5%	0.060
Hybrid Aggressive	UDDS	5.514	0.528	0.096	10.456	69.4%	0.971
Conventional	Odyne Low	3.782	0.809	0.214	4.678		0.000
Hybrid Mild	Odyne Low	3.780	0.656	0.174	5.758	23.1%	0.508
Hybrid Aggressive	Odyne Low	3.788	0.476	0.126	7.954	70.0%	1.675
Conventional	Odyne Medium	8.911	1.431	0.161	6.226		0.000
Hybrid Mild	Odyne Medium	8.907	1.226	0.138	7.266	16.7%	0.197
Hybrid Aggressive	Odyne Medium	8.897	0.815	0.092	10.918	75.4%	1.220

Test Truck on NREL ReFUEL Chassis Dyno

NREL Stationary Cycle Test Results

PTO shaft work specific results comparison				
	NOx	CO2	Fuel ConsCB	Fuel cons FS
_	g/kW-hr	g/kW-hr	g/kW-hr	g/kW-hr
Conventional PTO first	51.303	4423.116	1390.698	1452.816
Conventional PTO - warm	62.001	4388.342	1380.650	1460.858
ePTO Cold Charge	1.248	920.246	283.250	315.853
ePTO Warm Charge	0.731	712.890	224.050	250.621
Improvement: cold	98%	79%	80%	78%
Improvement: Warm	99%	84%	84%	83%

Collaborators /Team

Organization	Function
National Renewable Energy Laboratory	 Telematics Duty Cycle Analysis Fuel & Emissions Dynamometer Testing Full Year Fuel Use Modeling
Oak Ridge National Laboratory	 Powertrain Simulation, Energy use optimization Hardware-in-Loop (HIL) Powertrain Testing
Freightliner Trucks	 Chassis System Integration assistance, Vehicle models Investigating commercialization codes for Odyne System Truck Supplier for Prototype truck
Allison Transmission	Powertrain and transmission optimization supportTransmission Control System integration
Ricardo Strategic Sourcing	Battery System Sourcing
Utilities (2-TBD)	Provide 5 vehicles each for demo fleetParticipate in demo evaluation and feedback
South Coast Air Quality Management District	Project cost share

Responses, Barriers, Proposed Future Research

- Responses to Prior year comments
 - This project was not reviewed last year
- Remaining Barriers and Challenges
 - Changes in Utility priorities has made it difficult to find willing participants to donate capital equipment to the project for the period 3 demonstration
 - Odyne is working with DOE to revise the program plan to allow a depreciation cost-share rather than the full equipment, thus eliminating the capital burden on the Utility participants
- Proposed Future Research
 - Period 2: Complete full year simulation of work truck fuel savings based on NREL driving and stationary test results (In Process)
 - Period 2: Secure 2 Utility partners to partner with for Period 3 demonstration
 - Period 2: Assemble hybrid systems on Utility partners chosen platform
 - Period 3: Deliver demonstration vehicles (10 total) and perform 1 year demonstration and analysis

Summary

- Odyne and its project partners are working towards greater acceptance, improved fuel savings, and increased ROI of the Plug-in Hybrid/Jobsite Electrification system for Medium- Heavy-Duty Work Truck through:
 - Increased Driving Fuel Economy
 - Algorithms and/or inputs to manage the drive / work energy balance
 - Improved Full Year Fuel Savings
 - Reduced system cost, system simplification
- Advancements have been made in the areas of:
 - Development of driving, stationary duty cycles and full-year model for the work truck
 - Lab results demonstrating the driving and stationary fuel and emissions improvements of the Odyne PTO based hybrid and electrifications system.
 - Development of a modular system approach to medium and heavy-duty vocational vehicle electrification
- Remaining Deliverables:
 - Analytical Demonstration of 50% reduction in Work Truck fuel use
 - Secure, Build and monitor the 10 vehicle demonstration fleet