

Exceptional service in the national interest

Barriers to Scale: Algae Crop Protection Workshop

Dr. Jerilyn A. Timlin (presenting)

Dr. Tom Reichardt

PANEL 4: CURRENT AND FUTURE PEST MONITORING PRACTICES

April 20-21, 2021

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2021-4762 PE

Outlook on Crop Protection – Personal viewpoint

- What are the key attributes required in a pest monitoring program?
 - Response time (min → real-time), multianalytic, automation/skill level (not require specialized skills), cost (per day of operation), sensitivity/specificity
- Can crop protection be proactive vs reactive and how does this affect monitoring process or technologies?
 - Yes. Early detection will improve mitigation.
- Can monitoring rely on a single method?
 - A resounding "NO!" Multiple methods working in tandem (perhaps in a tiered approach) to surveil, identify, and remedy will be necessary at scale.
- What monitoring strategies are pest vs host specific?
 - Both pest-based and host-based monitoring strategies are important, but not necessarily pest-specific and host-specific. In many cases "specific" monitoring strategies can be limiting due to the large number of unknown pests and importantly molecular variants. Agnostic strategies could be very successful for surveillance and screening.
- Would a pest database or similar service be useful?
 - Yes, but what it would contain is critical not just molecular sequence information, but also physical and optical properties, pigment information, lifecycle, host range, etc.

Principal of Spectroradiometric Monitoring

(i)

Spectroradiometric Monitoring of Algal Biomass & Algal Predators

Spectroradiometric Monitoring of Algal Ponds

- Advantages over current practices
 - In-situ measurement of biomass and pigment optical activity and real-time detection of predator effect
 - Extremely rapid (~5-min) measurement times
 - Non-sampling/non-contact/stand-off detection
 - No laboratory access required
 - No extensive pre-calibration required
 - Fully autonomous operation, can be 24/7
- Limitations
 - Non-specific detection of functional effect on host algae
 - Requires characterization of algal optical properties
 - Indoor deployment has proven challenging

Current pond-side embodiment

