2021 Vehicle Technologies Annual Merit Review

Project ID: bat522

Overview

Timeline

- Start date: May 2020 End date: May 2023
- Percent complete: 30%

Budget

- Total Project Funding: \$5.4MM
- DOE: \$4.3MM (80%)
- Cost Share: \$1.1MM (20%)

Barriers capable of exhibiting Li

ion conductivity and low

Need production of Li

foil to be cost-effective

water crossover

- Need stable membrane
 - > High-quality, low-cost Li metal anodes

Alirio Liscano¹, Edward Barry², Zachary Hood², Donghyeon Kang², Matthew Earlam², John Hryn², Andrew Loebl¹, Alexandra Gold³

> US leadership in manufacturing of advanced battery materials

Relevance

Enabler for increased domestic battery manufacturing

Objectives

Impact

- > Dual-chamber electroplating from low-cost aqueous Li salt
- > High efficiency, cost competitive roll-to-roll route to ultra thin Li metal anodes
- Process scale-up and validation in prototype system

Milestones (Budget Period 1)			
Milestone	Type	Description	Status
Design and Construction of One-Compartment Electrolysis Cells	Technical	Construction of a lithium metal electrolysis cells capable of producing lithium plated areas	Complete
Performance Comparison	Technical	Quantitative performance comparison between electrodeposited thin film lithium and commercial lithium metal in coin and pouch cell testing	In Progress
Comparison of Two Compartment Electrodeposition	Technical	Quantitative comparison of lithium metal thin film using one and two compartment cells. Comparison will be conducted with coin and pouch cell testing.	In Progress
Go/No Go Decision (Achieve Performance Measures)	Go/No Go	Confirm that model-predicted large volume production cost of 20 µm Li anode by electrodeposition is less than half price of conventional foil. Battery capacity retention is equal to or better than conventional foil after 50 cvcles at C/5.	Complete

Approach

- > Electrolyte optimization in single compartment cell
 - Coin & pouch cell testing
- Design two-compartment cell &
 - Coin & pouch cell testing
- membrane development Design prototype unit
- Develop electrodeposition cost model
 - Assess cost effectiveness of electrodeposition method

Technical Accomplishments and Progress

Demonstrated battery performance superior to rolled foil

> Achieved ~50% longer cycle life to 80% capacity with electrodeposited Li anode √ Improved membrane performance

> Produced polymer membrane with high Li ion conductivity and significant reduction in anolyte, catholyte, and water crossover

Selected vendor & designed prototype electrodeposition unit

> Collaborated with a vendor to design pilot scale prototype electrodeposition unit

Summary

- Electrodeposited anodes using one compartment cell show 50% longer cycle life at 80% discharge capacity retention when compared against rolled Li of same thickness
- > Gen3 membrane shows high Li ion conductivity and significant reduction in water crossover

Remaining Challenges

- Scale membrane synthesis to meet prototype unit requirements
- Develop strategy for handling potential water
- Demonstrate path to 5-20 um Li foil at Gigafactory scale
- Demonstrate uniform Li deposition in twocompartment electrolytic cell

Future Work

- Complete membrane development and fabrication
- > Test coin & pouch cells with anodes made in two-
- Acquire, install, debug and validate prototype unit
- > Test coin & pouch cells with anodes made in prototype electrodeposition unit

compartment cells