2021 Vehicle Technologies Annual Merit Review Project ID: bat522 # Overview #### **Timeline** - Start date: May 2020 End date: May 2023 - Percent complete: 30% ### Budget - Total Project Funding: \$5.4MM - DOE: \$4.3MM (80%) - Cost Share: \$1.1MM (20%) ## **Barriers** capable of exhibiting Li ion conductivity and low Need production of Li foil to be cost-effective water crossover - Need stable membrane - > High-quality, low-cost Li metal anodes Alirio Liscano¹, Edward Barry², Zachary Hood², Donghyeon Kang², Matthew Earlam², John Hryn², Andrew Loebl¹, Alexandra Gold³ > US leadership in manufacturing of advanced battery materials Relevance Enabler for increased domestic battery manufacturing #### Objectives Impact - > Dual-chamber electroplating from low-cost aqueous Li salt - > High efficiency, cost competitive roll-to-roll route to ultra thin Li metal anodes - Process scale-up and validation in prototype system | Milestones (Budget Period 1) | | | | |---|-----------|---|----------------| | Milestone | Type | Description | Status | | Design and Construction
of One-Compartment
Electrolysis Cells | Technical | Construction of a lithium metal electrolysis cells capable of producing lithium plated areas | Complete | | Performance
Comparison | Technical | Quantitative performance comparison between
electrodeposited thin film lithium and commercial
lithium metal in coin and pouch cell testing | In
Progress | | Comparison of Two
Compartment
Electrodeposition | Technical | Quantitative comparison of lithium metal thin film
using one and two compartment cells. Comparison
will be conducted with coin and pouch cell testing. | In
Progress | | Go/No Go Decision
(Achieve Performance
Measures) | Go/No Go | Confirm that model-predicted large volume
production cost of 20 µm Li anode by
electrodeposition is less than half price of
conventional foil.
Battery capacity retention is equal to or better than
conventional foil after 50 cvcles at C/5. | Complete | ### **Approach** - > Electrolyte optimization in single compartment cell - Coin & pouch cell testing - Design two-compartment cell & - Coin & pouch cell testing - membrane development Design prototype unit - Develop electrodeposition cost model - Assess cost effectiveness of electrodeposition method ## **Technical Accomplishments and Progress** **Demonstrated battery performance** superior to rolled foil > Achieved ~50% longer cycle life to 80% capacity with electrodeposited Li anode √ Improved membrane performance > Produced polymer membrane with high Li ion conductivity and significant reduction in anolyte, catholyte, and water crossover Selected vendor & designed prototype electrodeposition unit > Collaborated with a vendor to design pilot scale prototype electrodeposition unit #### Summary - Electrodeposited anodes using one compartment cell show 50% longer cycle life at 80% discharge capacity retention when compared against rolled Li of same thickness - > Gen3 membrane shows high Li ion conductivity and significant reduction in water crossover ## Remaining Challenges - Scale membrane synthesis to meet prototype unit requirements - Develop strategy for handling potential water - Demonstrate path to 5-20 um Li foil at Gigafactory scale - Demonstrate uniform Li deposition in twocompartment electrolytic cell #### **Future Work** - Complete membrane development and fabrication - > Test coin & pouch cells with anodes made in two- - Acquire, install, debug and validate prototype unit - > Test coin & pouch cells with anodes made in prototype electrodeposition unit compartment cells