WE START WITH YES.

Fluorinated Solvent-Based Electrolytes for Low Temperature Li-Ion Batteries

Zhengcheng (John) Zhang (PI)
Argonne National Laboratory
June 21-25, 2021
2021 DOE VTO Annual Merit Review

This presentation does not contain any proprietary, confidential, or otherwise restricted information
OVERVIEW

Timeline

▪ Start: October 1, 2020
▪ End: September 30, 2023
▪ Percent Complete: 33%

Budget

▪ Total project funding for FY21:
 – ANL - $400,000
 – LBL - $300,000
▪ Presentation:
 – BAT520

Barriers

▪ Development of PHEV and EV batteries that meet or exceed DOE and U.S. DRIVE goals
 – Performance (capacity, energy and power) at low temperatures
 – Abuse tolerance
 – Cost

Partners

▪ Lawrence Berkeley National Lab
▪ Materials Engineering Research Facility - Argonne
▪ Materials Science Division – Argonne
▪ Navitas Systems
▪ Leading Organization: Argonne National Lab
RELEVANCE

The next-generation Li-ion battery for electric vehicles requires not only high-energy high-power density, long cycle life, low cost, and enhanced safety, but also fast charging and superior low temperature (LT) performance, especially in the cryogenic range to -20°C.

\[R_{\text{cell}} = R_{\text{bulk}} + R_{\text{SEI}} + R_{\text{charge transfer}} \]

\[\frac{1}{R} = A_0 e^{-E_a / RT} \]

Overpotential and lithium plating at subzero temperatures cause low cell performance

1. Low ionic conductivity of the bulk of electrolyte: lithium salt precipitation, low Li\(^+\) diffusivity – high resistance of electrolyte (\(R_{\text{bulk}}\))

2. High resistance of solid-electrolyte-interface (SEI) (\(R_{\text{SEI}}\)) formed on graphite anode at low temperature

3. Reduced kinetics of Li\(^+\) intercalation and deintercalation (\(R_{\text{charge transfer}}\))

4. Unfavorable Li\(^+\) de-solvation at the graphite/electrolyte interface (\(R_{\text{charge transfer}}\))

5. SEI evolution during low temperature cycling
With decreasing temperature from room temperature (25°C) to -40°C, the discharge capacity of lithium-ion battery is significantly reduced up to 65%.

Not only discharge capacity, the discharge voltage of the lithium-ion battery also decreases dramatically with decreasing temperature, leading to the loss of overall energy of the battery at subzero temperatures.

The objective of this project is to develop new-solvent based next-generation electrolyte materials/formulations that improve the low temperature performance without compromising high-temperature performance and fast charge capability.
APPROACH

- Low melting point (m.p.) fluorinated carbonates (linear and cyclic) as well as extremely low m.p. carboxylate esters and alkyl nitriles as mixed solvents to improve the low ionic conductivity at subzero temperatures.
- Development of tailored SEI formation additives to stabilize the graphite anode surface with low resistance.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Chemical Name</th>
<th>Chemical Structure</th>
<th>M.P. (°C)</th>
<th>B.P. (°C)</th>
<th>Dielectric Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>Ethylene carbonate</td>
<td></td>
<td>36.4</td>
<td>248</td>
<td>90</td>
</tr>
<tr>
<td>DFEC</td>
<td>2,2-Difluoroethylene carbonate</td>
<td></td>
<td>-18.5</td>
<td>-</td>
<td>2.3</td>
</tr>
<tr>
<td>TFPC</td>
<td>3,3,3-Trifluoropropylene carbonate</td>
<td></td>
<td>-3</td>
<td>206.6</td>
<td>n.a.</td>
</tr>
<tr>
<td>FEMC</td>
<td>2,2,2-Trifluoroethyl methyl carbonate</td>
<td></td>
<td>-66.7</td>
<td>104-106</td>
<td>n.a.</td>
</tr>
<tr>
<td>HFDEC</td>
<td>Bis(2,2,2-trifluoroethyl) carbonate</td>
<td></td>
<td>-66.5</td>
<td>118</td>
<td>n.a.</td>
</tr>
<tr>
<td>EP</td>
<td>Ethyl propionate</td>
<td></td>
<td>-73.6</td>
<td>98.9</td>
<td>5.8</td>
</tr>
<tr>
<td>PP</td>
<td>Propyl propionate</td>
<td></td>
<td>-76</td>
<td>122-124</td>
<td>5.2</td>
</tr>
<tr>
<td>EB</td>
<td>Ethyl butyrate</td>
<td></td>
<td>-93</td>
<td>120-121</td>
<td>n.a.</td>
</tr>
<tr>
<td>BN</td>
<td>Butyronitrile</td>
<td></td>
<td>-112</td>
<td>115-117</td>
<td>24.8</td>
</tr>
</tbody>
</table>

SEI Formation Additives

- FEC
- PS
- LiDFOB
(1) TFPC (fluorinated PC)-Based Low Temperature Electrolyte (LTE)

TECHNICAL ACCOMPLISHMENTS AND PROGRESS

- Although an ideal LT electrolyte solvent, PC-based electrolyte exfoliates graphite anode at 0.9 V vs Li⁺/Li.
- However, after fluorination, TFPC passivates the graphite surface and enables reversible Li⁺ intercalation chemistry.
TECHNICAL ACCOMPLISHMENTS AND PROGRESS

TFPC (fluorinated PC)-Based LTE Cell Performance at -20°C

NMC622/Graphite Cell
- Cutoff voltage: 2.7 – 4.2 V
- 3 C/20 formation cycles at RT
- 1 C/20 formation cycle at -20°C
- C/3 cycling at -20°C

NMC622/preformed graphite cell
- Graphite anode was preformed with Gen 2’ electrolyte (0.6 M LiPF₆ EC/EMC)
- Cutoff voltage: 2.7 – 4.2 V
- C/3 cycling at -20°C

- Up to 30% TFPC, all ternary electrolyte formulations (TFPC/EC/EMC) overperform the Gen 2 baseline electrolyte at -20°C.
- 10% TFPC shows the best performance: capacity and capacity retention.
- Preformed graphite with Gen 2 electrolyte didn’t show advantage in cell performance – electrolyte bulk property dominates.
Large amount of FEC (>10%) is necessary. This is due to the high reactivity of BN at the graphite electrode.

However, LT performance was compromised if FEC volume ratio is higher than 25%.

The optimal FEC/BN solvent ratio is 25/75 (v/v).

Testing protocol: 2.7-4.2V; C/20 formation x3, C/3 for 1.5 cycles at 25°C; C/3 discharge at -20°C, respectively. 2 cells per electrolyte

(2) Fluoroethylene Carbonate (FEC)/Butyronitrile (BN) Binary Solvents

- **Full cell dQ/dV (C/20 1st formation cycle)**
- **Cell performances at 25 and -20°C with different FEC amount**
Fluoroethylene Carbonate (FEC)/Butyronitrile (BN) + Tailored Additives

- Tailored for 1.0 M LiPF₆ FEC/BN electrolyte system, 1,3-propane sultone (PS) shows the comparable performance with Gen 2 at room temperature.
- Among all the additives studied (LiDFOB, EC and VC), PS shows the best low temperature cell performance at -20°C and even -40°C.
- 5% PS additive amount is optimal - 1.0 M LiPF₆ FEC/BN (25/75) + 5% PS
LT cell performance (capacity and energy) is highly dependent on the selection of the anion of the lithium salt. LiBF$_4$ showed the best performance than LiPF$_6$ and LiFSI salt. 1.0 M LiBF$_4$ in FEC/BN (25/75) + 5% PS was selected as the optimal electrolyte for further study.
Ionic conductivity

Activation energy from VFT equation fitting

\[
\sigma = \sigma_0 T^{-1/2} e^{-\frac{E_a}{R(T-T_0)}}
\]

- \(E_a\): pseudo-activation energy; \(\sigma_0\) and \(T_0\): empirical fitting constants

<table>
<thead>
<tr>
<th>Electrolyte</th>
<th>(E_a) (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen 2 (Baseline electrolyte)</td>
<td>17 ± 0.2</td>
</tr>
<tr>
<td>1 M LiBF(_4) in FEC/BN (25/75)</td>
<td>13 ± 0.2</td>
</tr>
<tr>
<td>1 M LiPF(_6) in FEC/BN (25/75) + 5% PS</td>
<td>19 ± 0.3</td>
</tr>
<tr>
<td>1 M LiBF(_4) in FEC/BN (25/75)</td>
<td>20 ± 0.2</td>
</tr>
<tr>
<td>1 M LiBF(_4) in FEC/BN (25/75) + 5% PS</td>
<td>18 ± 0.3</td>
</tr>
</tbody>
</table>

- 1 M LiPF\(_6\) in FEC/BN (v/v = 25/75) had exceptionally high ionic conductivities, i.e. 16.0 mS/cm and 7.0 mS/cm at 25°C and -20°C, respectively, much higher than those for 1 M LiBF\(_4\) in FEC/BN (25/75).
- Adding 5% PS additive slightly decreases the conductivities of LiPF\(_6\) electrolyte but increases for the LiBF\(_4\) electrolyte.
- Log \(\sigma\) vs 1/T plots do not exhibit good linear fit. A modified Nernst equation was applied for \(E_a\) calculation.
FEC/BN Electrolyte: Coordination and Solvation Structure

- BN is coordinated strongly through nitrogen and dominates the solvation shell, excluding the presence of other solvents and the anion.
- FEC is coordinated through the carbonyl oxygen, but more weakly than the nitrogen through nitrile group in BN.

Different solvent ratios exhibit similar solvated species, with some differences in relative populations.
Despite improved cell performance at LT, the BN/FEC 75:25 ratio has the worst ion transport properties.

Higher ion pairing in the bulk electrolyte reduces Li\(^+\) mobility and conductivity of the system.

Ionic conductivity shows a minimum at the 75:25 BN:FEC ratio.
Conductivity trend is closely reproduced by modeling.
- Residence times rapidly drop as T increases, allowing FEC and PF$_6^-$ to participate in the solvation shell more frequently.
- BN is still the majority component in the solvation shell at all temperatures.

Temperature change does not affect speciation, but they do affect solvation dynamics

Li vs PF$_6$ Fluorine
- Temperature change does not affect speciation,
- but they do affect solvation dynamics

Li vs Carbonyl Oxygen
- Temperature change does not affect speciation,
- but they do affect solvation dynamics

Ionic Conductivity by Temperature
- Conductivity trend is closely reproduced by modeling.
- Residence times rapidly drop as T increases, allowing FEC and PF$_6^-$ to participate in the solvation shell more frequently.
- BN is still the majority component in the solvation shell at all temperatures.

Temperature change does not affect speciation, but they do affect solvation dynamics

Residence Times by Temperature
- Conductivity trend is closely reproduced by modeling.
- Residence times rapidly drop as T increases, allowing FEC and PF$_6^-$ to participate in the solvation shell more frequently.
- BN is still the majority component in the solvation shell at all temperatures.

Temperature change does not affect speciation, but they do affect solvation dynamics
TECHNICAL ACCOMPLISHMENTS AND PROGRESS

(3) Carboxylate Esters + FEC Additive

Gen 2:
1.2 M LiPF₆ EC/EMC
(w/w=3/7)

Discharge-charge voltage profile at C/3, 25°C

Discharge voltage profile at C/3, -20°C

- All carboxylate esters-based electrolytes with FEC as additive showed slightly lower discharge capacities than Gen 2 at 25°C.
- Propyl propionate (PP)-based electrolyte with 5% FEC showed improved capacity and energy at LT such as -30°C.
- At LT (-20 °C to -40°C), PP + 5% FEC showed higher discharge capacity and energies than Gen 2.
- At -40°C, all PP-based electrolytes had higher discharge energies than Gen 2.
Carboxylate Esters + FEC Additive: C-Rate Capability at LT

Rate performance at -20°C

Gr//NMC622

-20°C

<table>
<thead>
<tr>
<th>Specific capacity (mAh/g)</th>
<th>C/20</th>
<th>C/10</th>
<th>C/5</th>
<th>C/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen 2</td>
<td>180</td>
<td>160</td>
<td>140</td>
<td>120</td>
</tr>
<tr>
<td>1M LiPF₆/PP + 5% FEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

xC charge
C/3 discharge

<table>
<thead>
<tr>
<th>Cycles per EL</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/20</td>
<td>180</td>
<td>160</td>
<td>140</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>C/10</td>
<td>180</td>
<td>160</td>
<td>140</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>C/5</td>
<td>180</td>
<td>160</td>
<td>140</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>C/3</td>
<td>180</td>
<td>160</td>
<td>140</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
</tr>
</tbody>
</table>

C/3 cycling at -20°C

Gr//NMC622

-20°C

<table>
<thead>
<tr>
<th>Specific capacity (mAh/g)</th>
<th>200</th>
<th>180</th>
<th>160</th>
<th>140</th>
<th>120</th>
<th>100</th>
<th>80</th>
<th>60</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1M LiPF₆/PP + 5% FEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Testing protocol: left figure: 2.7-4.2V; C/20 formationX3 at 25°C, C/20, C/10, C/5, C/3, C, 2C, 3C charge and C/3 discharge, 5 cycles at each charge/discharge rate at -20°; right figure: 2.7-4.2V; C/20 formationX3 at 25°C; C/20x1 and C/3 x 100 cycles at -20°C. 2 cells per EL.

- At -20°C, 1M LiPF₆ PP+5% FEC shows improved C-rate capability than Gen 2.
- 1.0 M LiPF₆ PP+5% FEC shows slightly higher cycling capacity and comparable cycle life as Gen 2.
Carboxylate Esters + Mixed Additives (FEC + LiDFOB)

- FEC is the best SEI-forming single additive for PP electrolyte.
- Synergetic effect between FEC and LiDFOB further improves LT performance.

Full cell dQ/dV (1st formation cycle)

1 M LiPF$_6$/PP + Two Additives
TECHNICAL ACCOMPLISHMENTS AND PROGRESS

(4) Propyl Propionate + Fluorinated Carbonates – FEMC, HFDEC, TFPC

PP/F-Carbonate Electrolyte: 1 M LiPF$_6$ + 5 w.t.% FEC
Gen 2: 1.2 M LiPF$_6$ EC/EMC (w/w=3/7)

- PP/FEMC (v/v=90/10), PP/HFDE (v/v=80/20), and PP/TFPC (v/v=90/10) is the optimal solvent ratio for LT.
- HFDEC showed the best performance below -20°C among all studied fluorinated carbonate co-solvents.
At -20°C, 1 M LiPF₆ in PP/HFDEC (80/20) + 5% FEC shows improved cycling performance compared with Gen 2.
Further additive development is needed to improve low and high temperature performance.
RESPONSES TO PREVIOUS YEAR REVIEWER’S COMMENTS

This project was not reviewed last year
COLLABORATION AND COORDINATION WITH OTHER INSTITUTIONS

Kristin Persson – Lawrence Berkeley National Laboratory, Electrolyte simulation
Krzysztof Pupek – MERF, Argonne National Lab, TFPC solvent scaleup synthesis
Sheng S. Zhang – US Army Research Laboratory, Technical discussions
Andy Jansen/Bryant Polzin – CAMP facility, Argonne National Lab, Electrode supply
James Dong – Navitas Systems, LT electrolyte evaluation and testing
REMAINING CHALLENGES AND BARRIERS

➢ High ionic conductivities of non-traditional LTEs have been achieved by developing new formulations containing fluorinated carbonate solvents and non-carbonate solvents (carboxylate esters – acetate, propionates, butyrate and alkyl nitriles) at subzero temperatures.

➢ However, the solvent reactivities with graphite anode, *i.e.*, lack of resilient SEI formation for these non-traditional solvents remains a grand challenge to enable long-term cycling performance at lot temperature.

➢ Exclusive SEI additives tailored for each LTE that could form a low-resistance and high-resilience SEI needs to be identified or designed and synthesized.

➢ Correlation of electrolyte compositions - solvent/additive/lithium salt – with cell performance at low temperatures.

➢ Developed LTEs should also perform equally at high temperature performance (>50°C) to meet the USABC electrolyte target.

➢ Develop effective predictors of electrolyte performance from first-principles calculations.
PROPOSED FUTURE RESEARCH

Continue optimizing LTEs that show improved cell performance at low temperature (-40 ~ -20°C) for long-term cyclability and high temperature (>50°C) performance; Continue developing non-traditional solvent-based LTEs

- Further optimize additives for the developed highly conductive electrolyte systems to improve long-term cycling performance at low temperatures.
- Understand the root cause of the anion (BF$_4^-$ vs PF$_6^-$) effect in the FEC/BN electrolyte system using molecular modeling.
- Further understand how the bulk properties of electrolyte impact its LT performance.
- Investigate how the Li$^+$ desolvation and interaction/deintercalation kinetics impact its LT property by spectroscopic and simulation methods.
- Post-test analysis to identify the root cause of the degraded cell performance at LTs.
- Further develop new electrolyte formulations containing different solvent combination, tailored additives and suitable lithium salts.
- Streamline modeling workflow to enable high-throughput classical modeling work that spans the range of experimental studies.
- Integrate classical modeling workflow with ab-initio techniques to calculate reduction potentials for relevant molecular clusters.

Any proposed future work is subject to change based on funding levels
SUMMARY

✓ New fluorinated carbonate-based electrolytes, *i.e.*, trifluoropropylene carbonate (TFPC), fluoroethylene carbonate (FEC)/butyronitrile (BN), and fluorocarbonates/propyl propionate (PP) and propyl propionate (PP) solo-solvent, were developed for LT applications which show improved cell capacity and energy at -20°C ~ -40°C compared with Gen 2 evaluated in NMC622/graphite couple.
✓ For TFPC-based electrolyte, TFPC added as a cosolvent to the traditional electrolyte significantly improves the cell performance at low temperature.
✓ For FEC/BN binary solvent system, the FEC/BN solvent ratio, lithium salt, and SEI additives were optimized to achieve optimal cell performance (capacity, energy and C-rate) at low temperature.
✓ Anions of lithium salt significantly affects the low temperature performance for FEC/BN-based electrolytes; LiBF$_4$ outperformed LiPF$_6$ and LiFSI.
✓ For fluorinated carbonates/PP-based electrolytes, bis(2,2,2-trifluoroethyl) carbonate (HFDEC) outperformed other fluorocarbonates (FEMC, TFPC, FEC) at -20°C.
✓ For FEC/BN binary system, modeling indicates temperature minimally effects solvation structure but substantially changes solvation dynamics.
✓ Optimal FEC/BN (25/75) solvent ratio is determined by SEI formation rather than bulk transport property.
TECHNICAL BACK-UP DIVIDER SLIDE
FEC/BN Electrolyte bulk property: LiBF₄ vs LiPF₆

- LT performances: LiBF₄ is better than LiPF₆
- 1 M LiPF₆ in FEC/BN (v/v = 25/75) has exceptionally high ionic conductivities, i.e. ~16 mS/cm and 7 mS/cm at 25 and -20°C, respectively, which are also much higher than 1 M LiBF₄ in FEC/BN (v/v = 25/75)
- Adding PS alters ionic conductivities slightly. The temperature dependence of the ionic conductivity is non-Arrhenius
FEC/BN with LiPF$_6$/LiBF$_4$ Mixed Salt

Solvent: FEC/BN (v/v=25/75)

Cycling protocol: 2.7-4.2V; C/20 formationX3, C/3 for 1.5 cycles at 25°C; C/3 discharge at -20, -30, -40°C, respectively. 2 cells per EL. Best cell shown.

- Mixed salt electrolytes showed deteriorated cell performance at both low and room temperatures.
- Single salt electrolyte 1 M LiBF$_4$ is still the best at all temperatures.
FEC/BN: LiBF$_4$ concentration effect

Salt: LiBF$_4$
Solvent: FEC/BN (v/v=25/75)

Testing protocol: 2.7-4.2V; C/20 formationX3, C/3 for 1.5 cycles at 25°C; C/3 discharge at -20, -30, -40°C, respectively. 2 cells per EL. Best cell shown.

- LiBF$_4$ concentration impacts the low temperature performance.
- Low LiBF$_4$ concentration which is less than (0.5 M) is beneficial for LT performance.
- However, when concentration is more than 1.5 M, cell performance degrades fast.