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Overview

Timeline

▪ Project start date: Oct. 2019

▪ Project end date: Sept. 2021

▪ Percent complete: On-going

Budget

▪ Total project funding:

– $ 600K in FY21

Barriers

▪ Advanced synthesis processes and materials 
are needed to improve battery performance.

▪ New active battery materials with desired 

particle size, morphology, and composition 

distribution are not commercially available.

Partners

▪ Battery material process R&D:

– Brookhaven National Laboratory

• 3D XRF tomography

• XANES and EXAFS

– University of Wisconsin

• Nano-indentation

• Particle elasticity

– University of California, Irvine

• HRTEM

– Argonne Post-Test Facility

• Cross-sectional SEM of 

cycled cathode electrode

• XPS analysis 
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Relevance

▪ The relevance of this program to the DOE Vehicle Technologies Program is:

– Emerging synthesis processes need to be explored to enable rapid robust reproducible 

manufacturing of active battery materials.

– This program is a key missing link between the discovery of advanced battery materials, market 

evaluation of these materials, and high-volume manufacturing.

– It reduces the risk associated with the synthesis process development and scale-up of new battery 

materials.

▪ The objective of this program is to establish flexible R&D capability of supercritical 

fluid reactions as an emerging manufacturing process for active battery materials:

– Develop a robust and reproducible hydro-solvothermal (HYST) synthesis process to assure 

economic feasibility and scale-up strategies.

– Produce and provide single-crystal battery materials with desired particle size, morphology, and 

composition distribution to support fundamental research.

– Characterize single-crystal battery materials and improve their high-rate capability and long-term 

cyclability by synthesis process optimization.
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Approach : Milestones

4

2021

Production of single-crystal NMC96-2-2 cathode

▪ Derivation of process parameters and understanding of their impacts

▪ Particle size and morphology control of single-crystal NMC96-2-2 precursor

▪ Lithiation and heat treatment optimization

▪ Material characterization and electrochemical performance evaluation

▪ Provide produced materials to collaborators

Completed Q1

Preliminary synthesis of Al/Zr-doped single-crystal NMC96-2-2 cathodes

▪ Synthesis process tuning 

▪ Preliminary synthesis of Al/Zr-doped single-crystal NMC96-2-2 precursors and cathodes

▪ Preliminary material characterization and electrochemical test

In-progress Q2

Production of Al/Zr-doped single-crystal NMC96-2-2 cathodes

▪ Optimize the size and morphology of Al/Zr-doped single-crystal NMC96-2-2 cathodes

▪ Evaluate the effect of Al/Zr-doping amount

▪ Material characterization and electrochemical performance evaluation

▪ Provide produced materials to collaborators

go/no-go Q3

2020

Hydrothermal synthesis process set-up

▪ System adjustment to produce single-crystal NMC96-2-2 precursor

▪ Synthesis process tuning and reaction chemistry confirmation

▪ Preliminary material synthesis and evaluation for feedback to synthesis process 

Completed Q4



Approach : Strategy

▪ Commercializable hydro-solvothermal process is one of the most important synthesis 

routes to produce single-crystal particle. 

▪ Hydro-solvothermal process can tailor the morphology of single-crystal particle by 

changing the reactant, concentration, pressure, temperature, and mineralizer.

▪ Establish a flexible hydro-solvothermal synthesis platform to produce advanced 

single-crystal battery materials with desired particle size, morphology, and 

composition distribution.

▪ Provide single-crystal battery materials with advanced features to support basic 

researchers and to facilitate industrial evaluation:

– 1~3 micron single-crystal particle without internal void fraction to enhance electrode density 

– Longer cycle life with robust particle structure by suppressing particle crack during cycling

– Reduced surface area without internal grain boundary to mitigate side reaction

– Facet-controlled particle morphology to enable faster lithium transport
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1 μm

❑ Polycrystalline cathode particle

▪ Secondary particle composed of 

primary particles having a size of 

several hundred nanometers

❑ Single-crystal cathode particle

▪ Micron-sized robust structure w/o particle crack

▪ High electrode density w/o internal void fraction

▪ Reduced surface area mitigating side reaction

▪ Facet-controlled morphology for faster Li transport 

▪ Improved surface coating effect

vs
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Technical Accomplishments and Progress  

Single-crystal Material via Hydrothermal Synthesis   

US. Patent 9,446,967

US. 2020/0099045 A1

Patent filed

▪ Super/sub-critical hydrothermal 

process can tailor crystallization by 

adjusting the reactant, concentration, 

pressure, temperature, and mineralizer.

Ni0.96Co0.02Mn0.02(OH)2

co-precipitated 

precursor

Ni0.96Co0.02Mn0.02O

hydrothermal

precursor
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Technical Accomplishments and Progress  

Single-crystal Hydrothermal Precursor

▪ Single crystals with size 

ranging from 0.5 μm to 3 μm 

were produced. 

▪ Truncated octahedral shape 

is obtained regardless of size. 

▪ Particle shape evolution can 

be controlled by adjusting 

growth rates along the [100] 

and [111] facet directions.

❑ Size-controlled 

NMC96-2-2 

oxide precursor
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Octahedral

8 x (111)

Cubic

6 x (100)



Technical Accomplishments and Progress  

XRD and Electrochemical Performance 

❑ Polycrystalline & single-crystal precursors

❑ Polycrystalline & single-crystal cathodes

❑ Coin half-cell evaluation

† NiO

* NiCoMn(OH)2

Polycrystalline 

NMC96-2-2

Single-crystal 

NMC96-2-2

‡ LiNiCoMnO2

Polycrystalline 

NMC96-2-2

Single-crystal 

NMC96-2-2



Technical Accomplishments and Progress  

Diagnosis at ANL Post-Test Facility

Before cycling                                    After cycling

Polycrystalline 

NMC96-2-2 

cathode

Single-crystal 

NMC96-2-2 

cathode

❑ Cross-sectional SEM observation of cathode electrodes 

Dr. Seoung-Bum Son & Dr. Ira Bloom



Technical Accomplishments and Progress  

TEM of Single-crystal NMC96-2-2 Cathode Dr. Feng Wang

❑ Bright-field TEM imaging Electron-diffraction

▪ Diffraction spots dominantly arising from scattering from 

the same set of lattice planes (i.e. 001). (*less intense spots 

may come from broken particle around the large particle.)

▪ Electron-diffraction result shows single-crystal nature of 

the large-sized particles.
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Technical Accomplishments and Progress  

TEM of Single-crystal NMC96-2-2 Cathode Dr. Feng Wang

❑ Annual dark-field (ADF) imaging

▪ ADF imaging: Clear facets shown in individual grains.

▪ EELS (*not energy calibrated)

Local variation of the Ni oxidation indicated by the intensity 

change of pre-peak in O-K edge: 

— Much reduced intensity at the near-surface region indicates 

the lower oxidation state of Ni that may be associated with 

rock salt or low lithiated layered oxides.
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Technical Accomplishments and Progress  

Particle Crack Analysis by Nano-indentation

Youngho Shin et al, Small, 2021, 2100040

❑ Indentation measurement ❑ Indentation of polycrystalline NMC96-2-2 

▪ a) example of L–D curve for polycrystalline NMC622;

▪ b) the indenter tip is approaching the particle; 

▪ c-d) the particle is elastically and plastically deformed; 

▪ e) the crack initiates; 

▪ f-h) the crack propagates; 

▪ i) the particle is totally shattered

Before indenting                    After indenting

Prof. Sangkee Min 
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Particle breaking point

▪ Polycrystalline NMC96-2-2 

cathode particle with 4μm size 

shows breaking force of 4.3mN. 



Technical Accomplishments and Progress  

Particle Crack Analysis by Nano-indentation Prof. Sangkee Min 

❑ Indentation of single-crystal NMC96-2-2 cathode 

▪ Larger indenter and/or dimpled surface may bring particle to rest 

at an equilibrium position.
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Technical Accomplishments and Progress  

Al/Zr-doped Hydrothermal NMC96-2-2 Precursors
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Technical Accomplishments and Progress  

FIB Cross-section of Zr-doped Precursor Prof. Huolin Xin  

❑ 1wt% Zr-doped single-crystal NMC96-2-2 precursor
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▪ Nickel has a uniform distribution throughout the 

single-crystal particle.

▪ Manganese and cobalt show a gradient 

distribution that decreases in concentration from 

the center of the particle to the surface.

▪ It is clear that zirconium is more present on the 

surface of the particle.



Technical Accomplishments and Progress  

FIB Cross-section of Al-doped Precursor Prof. Huolin Xin  

❑ 1wt% Al-doped single-crystal NMC96-2-2 precursor

3 micron-sized

1wt% Al-doped 

nickel cored

NMC96-2-2 shelled 

single-crystal

oxide precursor

▪ A single-crystal particle with nickel core and 

NMC96-2-2 shell was obtained.

▪ Manganese and cobalt in the particle's shell 

show a gradient concentration.

▪ Aluminum appears to be uniformly distributed 

throughout the single-crystal particle.
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Technical Accomplishments and Progress  

XPS analysis at ANL Post-Test Facility

▪ Pure NMC96-2-2 shows typical XPS spectrums like polycrystalline co-precipitated materials. 

▪ Zr doping: Ni2p/Zr3d ratio is 3.1 for the precursor and 32.3 for the cathode. Zr3d shows notable 

concentration difference after calcination. The Zr may diffuse into bulk during calcination.

▪ Al doping: Al2s concentration at surface is higher for its doping level. Ni2p/Al2s ratio is 3.6 for 

the precursor and 2.9 for the cathode. (Al2p signal overlapped with Ni3p signal.)

Dr. Seoung-Bum Son & Dr. Ira Bloom



Technical Accomplishments and Progress  

XRD and Electrochemical Performance 

❑ Single-crystal NMC96-2-2 precursors

❑ Single-crystal NMC96-2-2 cathodes

❑ Coin half-cell evaluation

▪ XRD peaks of Zr oxides were confirmed.

▪ The capacity reduction of single-crystal NMC96-2-2 

is about half of that of polycrystalline NMC96-2-2.

▪ 1wt% Zr/Al-doping further suppress the capacity 

reduction of single-crystal NMC96-2-2 cathode.

‡ LiNiCoMnO2

# NiO

SC NMC96-2-2

1wt% Al-doped

1%wt Zr-doped

* Li8ZrO6

† NiO

SC NMC96-2-2

1wt% Al-doped

1%wt Zr-doped
* ZrO2
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Responses to Previous Year Reviewers’ Comments

▪ No comments from reviewers last year.
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Collaboration and Coordination

▪ Brookhaven National Laboratory: TEM and EELS analysis of 

single-crystal NMC96-2-2 precursor and cathode samples

▪ University of Wisconsin: Nano-indentation of polycrystalline 

and single-crystal NMC96-2-2 cathode samples

▪ University of California, Irvine: FIB cross-sectional elemental 

mapping of Al/Zr-doped single-crystal NMC96-2-2 precursors 

▪ Argonne Post-Test Facility: Electrode cross-sectional SEM and 

XPS analysis of pristine and cycled electrodes of polycrystalline 

and single-crystal NMC96-2-2 cathodes, Al/Zr-doped precursors 

and cathodes

▪ Hunt Energy: Industrial evaluation of single-crystal NMC811 

cathode samples
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Remaining Challenges and Barriers

▪ High quality experimental new active materials are needed for industrial validation and 

prototyping but they are not commercially available.

▪ There is a strong demand from the research community and battery industry for high 

quality, uniform experimental materials.

▪ Emerging manufacturing technologies need to be developed to address production costs 

of active battery materials.

▪ Hydro-solvothermal process can tailor particle size and morphology with robust 

crystalline structure but needs to be developed as a continuous-flow process for 

commercialization with economic feasibility.

▪ For each material composition, systematic synthesis research is needed to enable 

hydro-solvothermal process to generate single-crystal battery material with controlled 

size and morphology.
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Proposed Future Research (FY21-22) 

▪ Continue working on the synthesis of Al/Zr-doped single-crystal NMC96-2-2 cathodes

– Optimize the size and morphology of Al/Zr-doped single-crystal NMC96-2-2 cathodes

– Evaluate the effect of Al/Zr-doping amount

– Characterization of produced materials 

– Electrochemical performance evaluation of produced materials 

– Provide produced materials to collaborators

▪ Investigate conductive surface coating of single-crystal NMC96-2-2 cathodes

▪ Supply produced materials to the research community and industry for their evaluation

▪ Select and synthesize new compositions for single-crystal battery materials

▪ This program is open to suggestions in scaling up newly invented, promising active battery 

materials

Any proposed future work is subject to change based on funding levels
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Summary

▪ The developed hydro-solvothermal (HYST) system produces 40 grams of single-crystal 

NMC96-2-2 precursor with size ranging from 0.5 μm to 3 μm per batch operation.

▪ Single-crystal NMC96-2-2 cathode shows initial discharge capacity of 210 mAh/g and 

improved capacity retention than polycrystalline NMC96-2-2 cathode.

▪ It was observed that single-crystal NMC96-2-2 cathode maintains a robust crystal structure 

without particle crack after cycling.

▪ Electron-diffraction confirms single-crystal nature of the produced NMC96-2-2 cathode.

▪ Nano-indentation test platform is being set up to measure particle breaking force.

▪ 1wt% Zr and Al-doped single-crystal NMC96-2-2 materials were produced and their 

elemental distributions were investigated by FIB cross-section and XPS analysis.

▪ 1wt% Zr/Al-doping suppress the capacity reduction of single-crystal NMC96-2-2 cathode.
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