

Process R&D Using Supercritical Fluid Reactors

Youngho Shin (PI)

Carrie Siu

Argonne National Laboratory Project ID: BAT470

June 2021 Virtual This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: Oct. 2019
- Project end date: Sept. 2021
- Percent complete: On-going

Budget

- Total project funding:
 - \$ 600K in FY21

Barriers

- Advanced synthesis processes and materials are needed to improve battery performance.
- New active battery materials with desired particle size, morphology, and composition distribution are not commercially available.

Partners

- Battery material process R&D:
 - Brookhaven National Laboratory
 - 3D XRF tomography
 - XANES and EXAFS
 - University of Wisconsin
 - Nano-indentation
 - Particle elasticity
 - University of California, Irvine
 - HRTEM
 - Argonne Post-Test Facility
 - Cross-sectional SEM of cycled cathode electrode
 - XPS analysis

Relevance

- The relevance of this program to the DOE Vehicle Technologies Program is:
 - Emerging synthesis processes need to be explored to enable rapid robust reproducible manufacturing of active battery materials.
 - This program is a key missing link between the discovery of advanced battery materials, market evaluation of these materials, and high-volume manufacturing.
 - It reduces the risk associated with the synthesis process development and scale-up of new battery materials.
- The objective of this program is to establish flexible R&D capability of supercritical fluid reactions as an emerging manufacturing process for active battery materials:
 - Develop a robust and reproducible hydro-solvothermal (HYST) synthesis process to assure economic feasibility and scale-up strategies.
 - Produce and provide single-crystal battery materials with desired particle size, morphology, and composition distribution to support fundamental research.
 - Characterize single-crystal battery materials and improve their high-rate capability and long-term cyclability by synthesis process optimization.

Approach : Milestones

2020	 Hydrothermal synthesis process set-up System adjustment to produce single-crystal NMC96-2-2 precursor Synthesis process tuning and reaction chemistry confirmation Preliminary material synthesis and evaluation for feedback to synthesis process 	Completed	Q4
2021	 Production of single-crystal NMC96-2-2 cathode Derivation of process parameters and understanding of their impacts Particle size and morphology control of single-crystal NMC96-2-2 precursor Lithiation and heat treatment optimization Material characterization and electrochemical performance evaluation Provide produced materials to collaborators 	Completed	Q1
	 Preliminary synthesis of Al/Zr-doped single-crystal NMC96-2-2 cathodes Synthesis process tuning Preliminary synthesis of Al/Zr-doped single-crystal NMC96-2-2 precursors and cathodes Preliminary material characterization and electrochemical test 	In-progress	Q2
	 Production of Al/Zr-doped single-crystal NMC96-2-2 cathodes Optimize the size and morphology of Al/Zr-doped single-crystal NMC96-2-2 cathodes Evaluate the effect of Al/Zr-doping amount Material characterization and electrochemical performance evaluation Provide produced materials to collaborators 	go/no-go	Q3

Approach : Strategy

- Commercializable hydro-solvothermal process is one of the most important synthesis routes to produce single-crystal particle.
- Hydro-solvothermal process can tailor the morphology of single-crystal particle by changing the reactant, concentration, pressure, temperature, and mineralizer.
- Establish a flexible hydro-solvothermal synthesis platform to produce advanced single-crystal battery materials with desired particle size, morphology, and composition distribution.
- Provide single-crystal battery materials with advanced features to support basic researchers and to facilitate industrial evaluation:
 - 1~3 micron single-crystal particle without internal void fraction to enhance electrode density
 - Longer cycle life with robust particle structure by suppressing particle crack during cycling
 - Reduced surface area without internal grain boundary to mitigate side reaction
 - Facet-controlled particle morphology to enable faster lithium transport

Approach : Polycrystalline vs Single-crystal Cathodes

Polycrystalline cathode particle

Secondary particle composed of primary particles having a size of several hundred nanometers

 $1 \mu m$

Single-crystal cathode particle

- Micron-sized robust structure w/o particle crack
- High electrode density w/o internal void fraction
- Reduced surface area mitigating side reaction
- Facet-controlled morphology for faster Li transport
- Improved surface coating effect

Single-crystal Material via Hydrothermal Synthesis

 Super/sub-critical hydrothermal process can tailor crystallization by adjusting the reactant, concentration, pressure, temperature, and mineralizer.

Technical Accomplishments and Progress Single-crystal Hydrothermal Precursor

- Size-controlled
 NMC96-2-2
 oxide precursor
- Single crystals with size ranging from 0.5 µm to 3 µm were produced.
- Truncated octahedral shape is obtained regardless of size.
- Particle shape evolution can be controlled by adjusting growth rates along the [100] and [111] facet directions.

Octahedral 8 x (111)

Cubic 6 x (100)

XRD and Electrochemical Performance

Diagnosis at ANL Post-Test Facility

Cross-sectional SEM observation of cathode electrodes

After cycling

Single-crystal NMC96-2-2 cathode

TEM of Single-crystal NMC96-2-2 Cathode

Bright-field TEM imaging

- Diffraction spots dominantly arising from scattering from the same set of lattice planes (i.e. 001). (*less intense spots may come from broken particle around the large particle.)
- Electron-diffraction result shows single-crystal nature of the large-sized particles.

Technical Accomplishments and Progress TEM of Single-crystal NMC96-2-2 Cathode

Annual dark-field (ADF) imaging

0.2 µm

- ADF imaging: Clear facets shown in individual grains.
- EELS (*not energy calibrated)

Local variation of the Ni oxidation indicated by the intensity change of pre-peak in O-K edge:

 Much reduced intensity at the near-surface region indicates the lower oxidation state of Ni that may be associated with rock salt or low lithiated layered oxides.

Technical Accomplishments and Progress Particle Crack Analysis by Nano-indentation

Indentation measurement

- a) example of L-D curve for polycrystalline NMC622;
- b) the indenter tip is approaching the particle;
- c-d) the particle is elastically and plastically deformed;
- e) the crack initiates;
- f-h) the crack propagates;
- i) the particle is totally shattered

Indentation of polycrystalline NMC96-2-2

Before indenting

Load (mN) 5

1

After indenting

Particle Crack Analysis by Nano-indentation

 Larger indenter and/or dimpled surface may bring particle to rest at an equilibrium position.
 Argonne A 14

Al/Zr-doped Hydrothermal NMC96-2-2 Precursors

Pure single-crystal NMC96-2-2 precursor

SEM-EDS surface elemental mapping

1wt% Al-doped single-crystal NMC96-2-2 precursor

1wt% Zr-doped single-crystal NMC96-2-2 precursor

15

FIB Cross-section of Zr-doped Precursor

1wt% Zr-doped single-crystal NMC96-2-2 precursor

FIB Cross-section of Al-doped Precursor

1wt% Al-doped single-crystal NMC96-2-2 precursor

3 micron-sized 1wt% Al-doped nickel cored NMC96-2-2 shelled single-crystal oxide precursor

- A single-crystal particle with nickel core and NMC96-2-2 shell was obtained.
- Manganese and cobalt in the particle's shell show a gradient concentration.
- Aluminum appears to be uniformly distributed throughout the single-crystal particle.

XPS analysis at ANL Post-Test Facility

Dr. Seoung-Bum Son & Dr. Ira Bloom

- Pure NMC96-2-2 shows typical XPS spectrums like polycrystalline co-precipitated materials.
- Zr doping: Ni2p/Zr3d ratio is 3.1 for the precursor and 32.3 for the cathode. Zr3d shows notable concentration difference after calcination. The Zr may diffuse into bulk during calcination.
- Al doping: Al2s concentration at surface is higher for its doping level. Ni2p/Al2s ratio is 3.6 for the precursor and 2.9 for the cathode. (Al2p signal overlapped with Ni3p signal.)

XRD and Electrochemical Performance

Responses to Previous Year Reviewers' Comments

• No comments from reviewers last year.

Collaboration and Coordination

- Brookhaven National Laboratory: TEM and EELS analysis of single-crystal NMC96-2-2 precursor and cathode samples
- University of Wisconsin: Nano-indentation of polycrystalline and single-crystal NMC96-2-2 cathode samples
- University of California, Irvine: FIB cross-sectional elemental mapping of Al/Zr-doped single-crystal NMC96-2-2 precursors
- Argonne Post-Test Facility: Electrode cross-sectional SEM and XPS analysis of pristine and cycled electrodes of polycrystalline and single-crystal NMC96-2-2 cathodes, Al/Zr-doped precursors and cathodes
- Hunt Energy: Industrial evaluation of single-crystal NMC811 cathode samples

Remaining Challenges and Barriers

- High quality experimental new active materials are needed for industrial validation and prototyping but they are not commercially available.
- There is a strong demand from the research community and battery industry for high quality, uniform experimental materials.
- Emerging manufacturing technologies need to be developed to address production costs of active battery materials.
- Hydro-solvothermal process can tailor particle size and morphology with robust crystalline structure but needs to be developed as a continuous-flow process for commercialization with economic feasibility.
- For each material composition, systematic synthesis research is needed to enable hydro-solvothermal process to generate single-crystal battery material with controlled size and morphology.

Proposed Future Research (FY21-22)

- Continue working on the synthesis of Al/Zr-doped single-crystal NMC96-2-2 cathodes
 - Optimize the size and morphology of Al/Zr-doped single-crystal NMC96-2-2 cathodes
 - Evaluate the effect of Al/Zr-doping amount
 - Characterization of produced materials
 - Electrochemical performance evaluation of produced materials
 - Provide produced materials to collaborators
- Investigate conductive surface coating of single-crystal NMC96-2-2 cathodes
- Supply produced materials to the research community and industry for their evaluation
- Select and synthesize new compositions for single-crystal battery materials
- This program is open to suggestions in scaling up newly invented, promising active battery materials

Any proposed future work is subject to change based on funding levels

Summary

- The developed hydro-solvothermal (HYST) system produces 40 grams of single-crystal NMC96-2-2 precursor with size ranging from 0.5 µm to 3 µm per batch operation.
- Single-crystal NMC96-2-2 cathode shows initial discharge capacity of 210 mAh/g and improved capacity retention than polycrystalline NMC96-2-2 cathode.
- It was observed that single-crystal NMC96-2-2 cathode maintains a robust crystal structure without particle crack after cycling.
- Electron-diffraction confirms single-crystal nature of the produced NMC96-2-2 cathode.
- Nano-indentation test platform is being set up to measure particle breaking force.
- 1wt% Zr and Al-doped single-crystal NMC96-2-2 materials were produced and their elemental distributions were investigated by FIB cross-section and XPS analysis.
- 1wt% Zr/Al-doping suppress the capacity reduction of single-crystal NMC96-2-2 cathode.

Acknowledgements and Contributors

- Support from Peter Faguy and David Howell of the U.S. Department of Energy's Office of Vehicle Technologies is gratefully acknowledged.
- Argonne National Laboratory
 - Gregory K. Krumdick
 - Krzysztof Z. Pupek
 - Gerald Jeka
 - Andrew Turczynski
 - Trevor L. Dzwiniel
 - Ozge Kahvecioglu Feridun
 - Joseph Libera
 - Albert Lipson
 - Jessica Durham
 - Seoung-Bum Son
 - Ira Bloom
 - Daniel Abraham

- Brookhaven National Laboratory
 - Feng Wang
 - Seong-Min Bak
- University of Wisconsin
 - Sangkee Min
 - Sangjin Maeng
 - Aditya Nagaraj
- University of California, Irvine
 - Huolin Xin

