

Project ID: bat413

High-Performance, Low-Cobalt Cathode Materials for Lithium-Ion Batteries

Donghai Wang (PI) (PSU)

Chao-Yang Wang (PSU) Jagjit Nanda (ORNL) Chongmin Wang (PNNL)

2020 DOE Vehicle Technologies Office Annual Merit Review (AMR) 06/25/2021

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Project start date: Oct. 1, 2018
- Project end date: Dec. 31, 2021
- Percent complete: 70%

Budget

- Total project funding
 - DOE share: \$1,952,017
 - Contractor share: \$488,005
- Funding for FY 2021
 - DOE share: \$591,407
 - Contractor share: \$147,852

Barriers

- Synthesis of low cobalt cathode materials
- Stability of the materials
 - Interfacial stability against electrolyte;
 - Structural stability (H2-H3, Li/Ni mixing);
 - Stability at high-voltage conditions
- Pouch cell assembly

Partners

- Project lead: PSU
- Interactions/collaborations: PNNL, ORNL

Relevance

Impacts

- This project will study and deliver high-performance low-Co NCM cathode materials, which can potentially decrease cost of cathode materials, especially reduce dependence on the strategic resource of cobalt, promote increased adoption of EVs, and make the LIBs sustainable for EV application.
- The structure-performance relationship of low-Co NCM cathodes will be investigated elaborately for the development of advanced cathode materials.

Objective

- Low-cobalt $\text{LiNi}_{0.92}\text{Co}_{0.055}\text{Mn}_{0.025}\text{O}_2$ (NCM92): Ti doping
- Low-cobalt NCM92: MoO₃ and Sb₂O₃ coating
- Low-cobalt NCM92: LiPO₃ coating

Approach

- Transition metal cation composition optimization for enhanced lattice stability (Example: Ti-doped NCM92)
- Surface coating and infusion to mitigate solid-liquid reaction and enhance structural integrity (Example: LiPO₃/MoO₃/Sb₂O₃-coated NCM92)
- Atomic-scale advanced characterization to envisage new designing principle (HAADF-STEM with EDS analysis)

FY21 Milestones:

- Scale up of the cation-doped low-Co cathode material (Co loading < 50 mg Wh⁻¹, with a capacity of ~ 190 mAh g⁻¹ and 92% capacity retention in 100 cycles).
- Deliver thirty 2.5 Ah pouch cell with the developed low-Co cathode and graphite anode with over 240 Wh kg⁻¹ and about a 80% capacity retention over 1000 cycles.

Previous Accomplishments

2.5 Ah Graphite/LFP coated NCM811 pouch cell

 AI_2O_3 coating can improve the cycling stability of $LiNi_{0.92}Co_{0.055}Mn_{0.025}O_2$

85.7% capacity retentions after 1609 cycles at RT, 74.7% capacity retentions after 1006 cycles at 40°C (RPT condition)

BM_NCM: ball milling DC_NCM: dry coating

Technical Accomplishments and Progress: Neutron Diffraction Characterization

- Neutron diffraction data for all the cathode materials revealed that these compositional variants had good phase purity with conventional layered structure.
- The refinements indicated minimal (~1.5%) Li⁺/Ni²⁺ anti-site defect for the pristine and slight increase in pair antisite defect ~2% was observed in the NCM with AI.

HAADF-STEM with Elemental Distribution of Pristine NCM_Ti

Ti is uniformly distributed at both secondary and primary particle level.

NCM_bare after 200 cycles (@charged 4.3 V state)

NCM_Ti after 200 cycles (@charged 4.3 V state)

Ti doping can prevent the crack formation and particle destruction.

Ti doping leads to the apparent mitigation of the surface reconstruction layer thickness

Ti shows uniform distribution in the lattice, and Ti surface segregation can be noticed occasionally

Technical Accomplishments and Progress: MoO₃/Sb₂O₃-coated NCM92

- NCM92 cathodes were coated with 1-3 wt.% MoO₃ and 1 wt.% Sb₂O₃ using a coprecipitation + solid-state synthesis route.
- 1 wt.% MoO₃ coated NCM92 shows initial higher capacity but poor capacity retention whereas 1 wt.% Sb₂O₃ coated NCM92 gives excellent capacity retention.

Technical Accomplishments and Progress: LiPO₃-coated NCM92

All the coated samples show improved initial specific capacity and cyclability. The 0.1% sample shows the highest capacity retention and the 0.5% sample shows the highest initial discharge capacity.

Technical Accomplishments and Progress: LiPO₃-coated NCM92

No cracks observed for 0.1% and 0.5% samples after 200 cycles

Technical Accomplishments and Progress: Comparison

Retention of

200 cycles

80%

93%

90%

79%

87%

Under test

Responses to Previous Year Reviewers' Comments

Comment 1: The quality of the NCM materials needs to be improved.

Response 1: This year we have improved our material synthesis and modification, and now the electrochemical performance is much better. The capacity retention is up to 93% after 200 cycles. We believe that the new materials can fulfill the requirements of characterization, scale up and final cell delivery.

Comment 2: The reviewer found no consistent theme within the work but rather a mix of different approaches based on different material sets and development activities.

Response 2: Different approaches were conducted last year in order to find the best solution of obtaining low-cobalt materials with great electrochemical performance. We found that NCM92 is a proper candidate and this year all the works are based on NCM92.

Comment 3: AI_2O_3 is a common coating technology in the industry these days and is well known to provide some benefit and is widely available in commercial materials.

Response 3: Last year we have conducted AI coating/doping NCM materials and we have gained much experience and comprehension of low-cobalt NCM materials and corresponding optimization. This year we are focusing on different modifications of Ti doping, LiPO₃ coating and MoO_3/Sb_2O_3 coating to NCM materials, and the electrochemical performance is further improved.

Collaborations

- Pennsylvania State University (Chao-Yang Wang, Shanhai Ge)
 - Pouch cell testing
- Oak Ridge National Lab (Jagjit Nanda, Ethan Self, Devendrasinh Darbar)
 - Doping elements optimization and neutron scattering characterization
- Pacific Northwest National Lab (Chongmin Wang, Linze Li, Lianfeng Zou)
 - TEM (HRTEM, EDS, HAADF-STEM) characterization

- Further optimize cation-doped low-Co cathode materials
- Analysis of LiPO₃ coating distribution
- Scale up of the optimized low-Co cathode materials
- Deliver 2.5 Ah pouch cells with the developed low-Co cathode and graphite anode with over 240 Wh kg⁻¹ and about a 80% capacity retention over 1000 cycles

- Ti-doped NCM92 exhibits excellent capacity retention of 80% after 400 cycles in a half cell.
- Ti doping can prevent the crack formation and particle destruction, and suppress the growth of surface reconstruction layer.
- MoO₃ and Sb₂O₃ coating can improve the electrochemical performance of NCM92, and the mechanism needs to be further investigated.
- LiPO₃-coated NCM92 shows improved cyclability, and the structure and morphology of the material can be well preserved after 200 cycles.

Support from David Howell and Pete Faguy at the US Department of Energy's Office of Vehicle Technologies is greatly appreciated.

Technical Back-up Slides

Mo-doped NCM92

Technical Accomplishments and Progress: LiPO₃-coated NCM92

Coating material selection: different precursors, LPO-1, LPO-2 and LPO-3 (0.5% coating)

LPO-1 coating shows the highest initial specific discharge capacity and capacity retention.

Technical Accomplishments and Progress: LiPO₃-coated NCM92

XRD of electrodes of bare and coated cathode materials after 200 cycles

The 0.1% and 0.5% samples exhibit separate peaks (006) and (102) after 200 cycles, indicating a wellpreserved layered structure.

Ti precursor selection

