

6C, 2step, 450 cycles

Li [2.532

EXTREME FAST CHARGE CELL EVALUATION OF LITHIUM-ION BATTERIES (XCEL): OVERVIEW

BAT 386

x2.000 10ur

VENKAT SRINIVASAN Argonne National Lab

vsrinivasan@anl.gov

SAMUEL GILLARD Department of Energy

samuel.gillard@ee.doe.gov

AMR 2021

OVERVIEW

Timeline

- Start: October 1, 2017
- End: September 30, 2021
- Percent Complete: 75%

Budget

Funding for FY20 – \$5.6M

eXtreme Fast Charge Cell Evaluation of Lithium-Ion Batteries

V.8. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy VEHICLE TECHNOLOGIES OFFICE

Barriers

- Cell degradation during fast charge
- Low energy density and high cost of fast charge cells

Partners

- Argonne National Laboratory
- Idaho National Laboratory
- Lawrence Berkeley National Lab
- National Renewable Energy Laboratory
- SLAC National Accelerator Lab
- Oak Ridge National Lab

RELEVANCE: FAST CHARGE REMAINS AN ISSUE FOR WIDESPREAD ADOPTION OF EVS

Fast charging a major issue. While fast charge cells exist, they are cost prohibitive or have poor life

V& DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy VEHICLE TECHNOLOGIES OFFICE

RELEVANCE: WHAT LIMITS FAST CHARGE?

We need to understand how all three issues impact fast charge

RELEVANCE: CHALLENGES AT MULTIPLE SCALES

VEHICLE TECHNOLOGIES OFFICE

COLLABORATION ACROSS LABS AND UNIVERSITIES

Cell and electrode design and building, performance characterization, post-test, cell and atomistic modeling, cost modeling

Li detection, electrode architecture, diagnostics

Performance characterization, failure analysis, electrolyte modeling and characterization, Li detection, charging protocols

Thermal characterization, life modeling, micro and macro scale modeling, electrolyte modeling and characterization

Li detection, novel separators, diagnostics

Detailed Li plating kinetic models, SEI modeling

ENERGY Energy Efficiency & Renewable Energy VEHICLE TECHNOLOGIES OFFICE

CONTRIBUTORS AND ACKNOWLEDGEMENTS

Abhi Rai Alec Ho Alison Dunlop Ankit Verma Andy Jansen Andrew Colclasure Antony Vamvakeros Anudeep Mallarapu Aron Saxon Bor-Rong Chen Bryan McCloskey Bryant Polzin Che-Ning Yeh Chuanbo Yang Chuntian Cao Charles Dickerson Daniel Abraham Dave Kim David Brown David Robertson David Wragg Dean Wheeler Dennis Dees Divva Chalise **Donal Finegan** Elizabeth Allan-Cole Eongyu Yi Eric Dufek Eric McShane

Eva Allen Fang Liu Francois Usseglio-Viretta **Guoving Chen** Hakim Iddir Hans-Georg Steinrück Hansen Wang Harry Charalambous Ilva Shkrob Ira Bloom James W. Morrissette Ji Qian Jiavu Wan Jefferv Allen Johanna Nelson Weker Josh Major John Okasinski Juan Garcia Kae Fink Kandler Smith Kamila Wiaderek Kevin Gerina Maha Yusuf Manuael Schnabel Marca Doeff Marco DiMichiel Marco Rodrigues Matt Keyser Michael Evans

Michael Tonev **Molleiah Preefer** Nancy Dietz Rago Ning Gao Nitash Balsara Orkun Fura Partha Paul Parameswara Chinnam Paul Shearing Peter Weddle Pierre Yao **Quinton Meisner** Ravi Prasher Robert Kostecki Ryan Brow Sang Cheol Kim Sangwook Kim Sean Lubner Seoung-Bum Son Shabbir Ahmed Shriram Santhanaqopalan Srikanth Allu Steve Harris Steve Trask Susan Lopykinski Swati Narasimhan Tanvir Tanim Uta Ruett Venkat Srinivasan

Victor Maroni Vikrant Karra Vince Battaglia Vivek Bharadwaj Volker Schmidt Wei Tona Wenhan Ou Wenxiao Huang William Chueh William Huang Xin He Yang Ren Yanving Zhu Yi Cui Yifen Tsai Yugianz Zeng Zachary Konz Zhelong Jiang Zhenzhen Yang

VEHICLE TECHNOLOGIES OFFICE

Support for this work from the Vehicle Technologies Office, DOE-EERE: Samuel Gillard, Steven Boyd, and David Howell

APPROACH: UNDERSTAND THE PROBLEM TO ENABLE SOLUTIONS

ENERGY Energy Efficiency & Renewable Energy VEHICLE TECHNOLOGIES OFFICE

APPROACH COMBINES MULTIPLE EXPERTISE

SUMMARY OF ACCOMPLISHMENTS

2017

- Plating free: 10 min charge at 1.7 mAh/cm²
- 532 cathode exhibits 22% capacity fade (6C charge; 600 cycles)[#]

* Hero cell with latest anode design, new electrolyte, and new separator

[#] 532 and 811 cathode cycled to 4.1V

ENERGY Energy Efficiency & Renewable Energy VEHICLE TECHNOLOGIES OFFICE

• 10 min charge at 3 mAh/cm^{2*}

- 811 cathode exhibits 7% capacity fade (6C charge; 600 cycles)[#]
- Developed electrolytes w/ enhanced transport
- Developed multiple Li detection methods
- Quantified heat generation during fast charge and impact on life
- Developed model-informed charge protocols
- Developed methods to detect SOC and Li
- ¹⁰ plating heterogeneity across scales

WHAT DRIVES LI PLATING?

XCEL developed a deep understanding of the underlying issues

VIE DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy VEHICLE TECHNOLOGIES OFFICE

ALL THE ACTION HAPPENS CLOSE TO THE SEPARATOR.

4 mAh/cm² (230 Wh/kg cell; 110 micron electrodes)

Need a combination of solutions to enable fast charge

See BAT456 "HERO" CELL SHOWS IMPACT OF SYSTEMATIC CHANGES

Reduced CBD loading + Celgard separator 2500 + enhanced electrolyte

IMPROVEMENTS TO ANODE DESIGN AND See BAT456 ELECTROLYTE CONTINUE

Particle size/graded porosity

Implementation of these changes in the pipeline

Electrolyte 3 = Solvent C:EC:EMC,
1.2M LiPF ₆ + 1% FEC + 1% VC

V.S. DEPARTMENT OF ENERGY Renewable Energy VEHICLE TECHNOLOGIES OFFICE

See BAT461 WE ARE EXAMINING OTHER HETEROGENEITIES

Neutron imaging confirms model observations that electrolyte wetting needs consideration

Edge effects partially explain the data (~2 mm)

See BAT461

MAPPING HETEROGENEITIES REMAINS AN AREA OF IMPORTANCE

Mapping of ionic resistance

Quest continues to understand all the sources of inhomogeneity and to correlate it to Li plating

V.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy VEHICLE TECHNOLOGIES OFFICE

CLASSIFICATION OF LI DETECTION TECHNIQUES

V.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy VEHICLE TECHNOLOGIES OFFICE

Paul, Partha P., et al. "A Review of Existing and Emerging Methods for Lithium Detection and Characterization in Li-Ion and Li-Metal Batteries." *Advanced Energy Materials* 11.17 (2021): 2100372.

See BAT457

MAP LI CONCENTRATION GRADIENT IN ANODE

Stronger gradient precursor to Li plating

VEHICLE TECHNOLOGIES OFFICE

PRESSURE EVOLUTION WITH CYCLING

See BAT457

Pressure changes at discharged state correlate dead Li 6th cycle 10th cycle 3rd cycle 8th cycle 10th cycle 30 psi Graphite 25 23 21 19 17 15 14 12 8 6 4 2 >= 0 1 inch 0 psi Voltage vs. time Average pressure vs. time 4.5 45-@ 6C Pressure (psi) 0.4 (Voltage (V) 3.5 (V) 40-3.5-35 3.0-Stage II • Stage I 30т 10 15 20 0 5 25 10 15 20 25 0 5 Time (h) Time (h)

VEHICLE TECHNOLOGIES OFFICE

See BAT463 CATHODE CRACKING IDENTIFIED AS AN ISSUE

- Li plating dominates <6 C
- Cathode cracking > 6C

• SEM images show propensity for cracks after cycling

Program started with 532 cathode. Over the last year, transitioned to 811

EARLY RESULTS ON NMC 811 PROMISING

While cracking remains an issue, does not appear to exacerbate on cycling. Now examining single crystal cathodes.

eXtreme Fast Charge

HETEROGENEITY AT LARGE SCALES

See BAT459

25 Ah pouch cell simulation

- Primary reasons for heterogeneity:
 - Higher current density near the tabs.
 - Higher temperatures away from the cold plates leading to higher conductance of electrode.

V.8. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy VEHICLE TECHNOLOGIES OFFICE

See BAT459

THERMAL RAMP AS A KNOB

Investigating 6C CCCV charging at 50°C and various cooling rates back to 30°C during discharge

- NMC811/1506T cells with Gen 2 electrolyte and B26 electrolyte under test at 3 thermal ramp rates during C/2 discharge (20, 40 and 60 minutes)
- Tests now underway
- Modeling shows the importance of rapid cooling

ENERGY Energy Efficiency & Renewable Energy

 Accounts for cathode cracking and SEI/CEI growth. Does not include Li plating

Rapid cooldown important for extending calendar life

RESPONSE TO PREVIOUS YEAR REVIEWER'S COMMENTS

This project was not reviewed last year

V.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy VEHICLE TECHNOLOGIES OFFICE

REMAINING CHALLENGES AND BARRIERS

- 1. Can we ensure good cycle life on 3 Ah/cm² Gr-811 cells charging at 6C?
- 2. What knobs can be push to get 4 mAh/cm² cells charging at 6C?
- 3. Do single crystal NMC-811 cathodes allow cycling at 4.2 V without cracking?
- 4. Can we quantify impact of higher temperature charge on cycle life?
- 5. How much inhomogeneity can we tolerate without impacting cycle life?

PROPOSED FUTURE WORK*

- 1. Can we ensure good cycle life on 3 Ah/cm² Gr-811 cells charging at 6C?
- 2. What knobs can be push to get 4 mAh/cm² cells charging at 6C?
- 3. Do single crystal NMC-811 cathodes allow cycling at 4.2 V without cracking?
- 4. Can we quantify impact of higher temperature charge on cycle life?
- 5. How much inhomogeneity can we tolerate without impacting cycle life?

*Caveats related to funding apply

SUMMARY

VEHICLE TECHNOLOGIES OFFICE

