

Lithium-Metal Anodes: Problems and Multiple Solutions Based on Hosts, Interphase, and Electrolytes

Pls: Ji-Guang Zhang & Wu Xu

Pacific Northwest National Laboratory

2021 DOE VTO Annual Merit Review June 21-24, 2021

Project ID #bat362

Overview

Timeline

- Project start date: Oct. 2016
- Project end date: Sep. 2021
- Percent complete: 90%

Budget

- Total project funding \$50M
 - DOE share 100%
- Funding received in FY21: \$10M

Barriers

- Low Coulombic efficiency
- Li dendrite growth
- Large volume change

Partners

- Stanford University/SLAC
- University of California San Diego
- Idaho National Laboratory
- University of Washington
- Binghamton University
- UT Austin
- Brookhaven National Laboratory
- Texas A&M University

Relevance/Objectives

- Develop stable electrolytes to improve the CE of Li metal anode.
- Enable operation of thin Li metal anode in lean electrolyte conditions.
- Develop protective layers/separator to protect Li metal against dendrite growth.
- Develop efficient host for Li metal to minimize volume change of Li based anode.
- Enable high efficiency and safe utilization of Li metal anode for high energy density Li metal batteries required for long range EV applications.

Milestones

- Benchmark Li-anode architecture with 50-μm thick lithium anode using protocols for 350 Wh/kg cells, and achieve over 200 cycles in coins. (Q1, FY 2021; Completed)
- 2. Optimize pressure effect for Li-S from coin cells. (Q2, FY 2021; Completed)
- 3. Provide new electrolyte formulation for Li-S (PNNL). (Q3, FY 2021; In progress)
- 4. Demonstrate 350 Wh/kg pouch cell with > 450 cycles; 400 Wh/kg > 100 cycles; and > 450 Wh/kg pouch cell. Demonstrate good cycling of Li-S pouch cell 300 Wh/kg. (Q4, FY 2021; In progress)

Approaches (PNNL)

- Improve CE by using Localized High Concentration Electrolytes (LHCE)
- Tune LHCEs for high loading, lean electrolytes pouch cell applications
- Use fluorinated orthoformate-based electrolytes to extend long term calendar life of LMBs

1. Comparative studies on solvating solvents in LHCE

LHCE	Molar ratio	Mole concentration (M)	Ionic conductivity at 25 °C (mS cm ⁻¹)	Viscosity 25 °C (cP)	Density (g mL ⁻¹)
LiFSI-DMC-TTE	1:2.2:3	1.38	0.96	4.8	1.49
LiFSI-TMS-TTE	1:3:3	1.22	2.03	14.1	1.51
LiFSI-TEP-TTE	1:1.4:3	1.26	0.93	5.0	1.44
LiFSI-DME-TTE	1:1:3	1.52	1.59	3.7	1.48

➤ DME-LHCE exhibits the best Li –CE (99.5%) and leads to the best cycling stability of Li||NMC811 cells.

Cycling performance and structures of surface layers on LiNi_{0.94}Co_{0.06}O₂ (NC) after 500 cycles at 4.4 V and RT

a

Pristine

- Li||LiNi_{0.94}Co_{0.06}O₂ (NC) coin cells, 2.8-4.4 V, 1C = 1.5 mA/cm^2
- Baseline=1M LiPF₆/EC-EMC+2wt%VC

- ➤ LiFSI/DME-TTE based LHCE significantly improved cycling stability at 25 °C of ultrahigh-Ni cathode (NC) at 4.4 V.
- > DME-LHCE formed uniform and ultrathin CEI on NC even after 500 cycles at 4.4 V and RT.
- DME-LHCE did not lead to extra rock salt layer as the baseline did.

In collaboration with Prof. A. Manthiram of UT Austin

Cycled in LHCE

Cycled in Baseline

b

2. Comparative studies on diluent in LHCE

Diluent	BTFE (D1)	TTE (D2)	BTFEC (D3)	TFEB (D4)	TFEO (D5)	
D – Molecular weight / g mol ⁻¹	182.06	232.07	226.07	307.91	310.11	
D – Boiling point / °C	62–63	93.2	117–118	120– 123	144– 146	
D – Freezing point / °C	1	27.5	-	43	60	
D – Density / g mL ⁻¹	1.4	1.53	1.51	1.43	1.46	
D – Viscosity @ 25 °C/ cP	0.7	1.43	1.69	1.18	1.97	
D – Fluorine:hydrogen ratio	1.5	2	1.5	1.5	1.5	
D – HOMO / eV	-8.76	-9.31	-9.28	-9.27	-8.84	
D – LUMO / eV	-0.5	-0.5	-0.6	-0.47	-0.4	
E – Salt concentration / M	1.65	1.49	1.49	1.17	1.15	
E – Density / g mL ⁻¹	1.39	1.48	1.45	1.43	1.41	
E - Viscosity @ 25 °C/cP	2.86	4.92	4.06	2.84	4.86	
E - Conductivity @ 25 °C/ mS cm ⁻¹	4.88	2.44	2.64	1.88	1.61	

- ► Five fluorinated solvents barely dissolve LiFSI.
- The physical properties of the LHCEs containing different diluents are similar.

TFEO based LHCE leads to the best cycling stability in the coin cells with flooded electrolytes

3. Long-term (18 month) calendar life investigation on Li||NMC811 cells using TFEO based LHCE electrolyte

Fully charged cells can still retain 53% of the original capacity after 9-months storage.

Self-discharge and capacity recovery of Li||NMC cells at different stages during 18-month storage

	Time gap	Capacity recovery at fully discharge state		Self-discharge at 50% SOC				Self-discharge at fully charged state			
Time frame		Discharge capacity / mAh g ⁻¹	Capacity recovery / %	Discharge capacity / mAh g ⁻¹	Charge capacity / mAh g ⁻¹	Self- discharge capacity loss / mAh g ⁻¹	Self- discharge rate/ % day ⁻¹	Discharge capacity / mAh g ⁻¹	Charge capacity / mAh g ⁻¹	Self- discharge capacity loss / mAh g ⁻¹	Self- discharge rate/ % day ⁻¹
Initial capacity		203			97				218.9		
1 day	1 day	206.8	101.9	96.2	97	0.8	0.82	224.4	227.5	0	
1 week	1 week	208.7	102.8	94.2	97	2.8	0.41	221.8	228.3	5.7	0.36
2 weeks	1 week	211.7	104.3	94.9	97	2.1	0.31	221	229	7.3	0.46
3 weeks	1 week	212.1	104.5	94.6	97	2.4	0.35	219.4	229.7	9.6	0.6
4 weeks	1 week	212.8	104.8	93.7	97	3.3	0.48	215.8	228.2	13.9	0.86
2 months	1 month	211.8	104.3	83.7	97	13.3	0.46	198.8	227.6	29.4	0.43
6 months	4 months	210.2	103.5	56.4	-	40.6	0.35	164.5	226.7	63.1	0.23
9 months	3 months	202.5	99.8	-	97	-	-	148.4	216.8	78.3	0.38
18 months	9 months	181.9	89.6	21.3		75.7	0.43	114		102.8	0.26

- Self-discharge at fully charge state is only 47% after 9-months storage.
- ➤ Cells stored at fully discharged state can recover ~90% capacity after 18-months.

Structural and CEI properties of the NMC811 cathodes in Li||NMC811 cells after 18-month storage at different SOC

Charge condition during 18-month storage:

Fully discharged

30 μm 45 μm 50% charged

100% charged

Cross-section views of SEM images of Li metal electrodes collected from cells

Corrosion of Li metal anode increases with increasing SOC during storage

Proposed Future Work

- 1. Further improve the stability of electrolytes at elevated temperature to ensure safety and long-term calender life of LMBs.
- 2. Investigate calendar life of LMBs using pouch cells to eliminate the possible corrosion of stainless-steel coin-cell case by LiFSI salt.
- 3. Apply uniform pressure on pouch cells to minimize the surface of Li anode during storage and improve cycle and calendar life of LMBs.

Summary

- 1. Ether based LHCEs enable LMBs to show excellent long-cycle-life at voltages up to 4.5 V on different cathode materials.
- 2. Fluorinated Orthoformate based LHCE electrolyte (LiFSI in DME/TFEO) can enable long-term cycle life and good calendar life of LMBs.
- 3. Self-discharge of a fully charged LMBs is only 47% of the original capacity after 9-month storage.
- 4. Fully discharged LMBs are most stable during long term storage (~90% capacity recovery after 18-months).
- 5. Calendar life of LMBs increases with decreasing SOC of batteries during storage.

Acknowledgements

- ✓DOE/VTO/Battery500 program
- ✓PNNL Team Members: Xia Cao, Xiaodi Ren, Xianhui Zhang, Peiyuan Gao, Lianfeng Zou, Mark H. Engelhard, Bethany E. Matthews, Jiangtao Hu, Chaojiang Niu, Chongmin Wang, Kim, Jumyeong, Jie Xiao, Jun Liu
- ✓ University of Maryland: Xinzi He and Chunsheng Wang
- ✓ Battery 500 PIs and team members

Responses to Previous Year Reviewers' Comments

Q1: "Are there a better way to screen them other than cycling. Perhaps leakage current can be monitored at a fixed potential or the thickness of the SEI as a function of time at a fixed potential can be measured to determine if the Li-metal SEI is stable."

A1: The leak current measurement is a very effective way to check leak current and project calendar life in a static conditions which is dominated by chemical stability of electrolyte/electrode, but it is not the best way to check CE and cycling stability that are mainly depends on the electrochemical stability of Li in the given electrolyte. We have developed a method to screen the electrolyte by measuring the average CE in ten cycles in a Li||Cu cell instead of long-term cycling (Zhang et al., Adv. Energy Mater. 2017, 1702097.)

Q2: "At 99.3% CE means the cell with twice the excess Li is dead in 100 cycles or so...Keep the final goal in mind: 99.9% CE or higher."

A2: We agree that a Li CE >99.9% is required for long-term cycling of LMBs. We have improved the Li CE to be more than 99.5%. By adding a uniform pressure to cell and select the appropriate testing protocol, we can also increase the Li CE to be 99.8%. More work will be done to further increase Li CE.

Q3: "Cost has not been discussed other than at a very high level."

A3: Cost of LHCE electrolytes strongly depends on the scale of the production. We are working with industry partners to scale up the state-of-the-art LHCE to reduce the cost in the near future.

Q4: "The team also needs to provide calendar life and low-temperature data using the LHCE."

A4: New data reported in this presentation has demonstrated the LMBs using the LHCE has a reasonable calender life (cells stored at fully discharged state can recover ~90% capacity after 18-months) although it needs to be further improved.

Q5: "The project needs some way to quantitatively predict whether an electrolyte-anode combination will produce dendrites or not and they need to be detected early.

A5: The post mortal analysis of our cycled cells indicates that dendrite growth need to be suppressed by the combination of the multiple approaches, including a high CE electrolyte, appropriate operating pressure, well controlled cell assembly procedure, and operating conditions.

Collaboration and Coordination with Other Institutions

Partners:

- Stanford University: Coating and host for Li metal anode, cryo-electron microscopy
- SLAC: In situ X-ray characterization of Li metal anode
- University of California San Diego: Protective coating and in situ cryo-TEM characterization
- Idaho National Laboratory: Pressure effect on Li cycling and test of PNNL-made pouch cell
- University of Washington: Simulation of Li metal batteries
- UT Texas: Solid state electrolytes
- Brookhaven National Laboratory: Characterization of electrodes
- Texas A&M University: Simulation
- Binghamton University: Thermal stability

Remaining Challenges/Barriers

- The thermal stability of the electrolyte as well as the full cells need to be improved, especially when operating at realistic conditions.
- Calendar life of LMBs needs to be improved.
- Li CE need to be increase to more than 99.9%

Technical Backup Slides

Morphologies of NMC811 cathodes and CEI structures after 100 cycles in four LHCEs

DME-LHCE

1 nm

2 nm

- Crack inside secondary particles TMS-LHCE > DMC-LHCE > TEP-LHCE > DME-LHCE.
- Rock-salt layer: TMS-LHCE > DMC-LHCE > TEP-LHCE > DME-LHCE.
- CEI layer: TMS-LHCE > DMC-LHCE > TEP-LHCE > DME-LHCE.

DME-LHCE leads to the most stable cathode structure and much thinner CEI layer than other electrolytes.

Comparative studies on solvating solvents in LHCE

> DME-LHCE leads to the best cycling stability.

DME-LHCE leads to smallest voltage fade and capacity loss.

Comparative studies on diluent in LHCE

Radical distribution functions

Projected density of states (PDOS) of LHCEs

- ▶ Salt anion and solvating solvent form inner solvation sheath.
- ▶ BTFE, TTE, TFEB and TFEO exist in outer space of this inner sheath.
- ▶ BTFEC coordinates to Li⁺ in the second shell, which destroys the HCE clusters.
- ► The conduction band minimum (CBM) in the LHCE-BTFEC is on BTFEC while the CBMs in the other LHCEs are on the FSI⁻ anion.

Resistance evolution upon storage at 30 °C

- Resistance changes is very small in the first 9 months.
- Resistance changes accelerate after 9 months storage.
- Accelerated resistance change maybe related to the corrosion of S.S. can of coin-cells.

