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Pacific Overview
Northwest
Timeline :
Barriers
o Start datg. Oct. 2018 « Limited cell lifespan at high energy
 End date: Sept. 2021 . High v of cathod
« Percent complete: 89% 'gh Porosity ot cathode
« Shuttle effect and self-discharge
« Low sulfur (S) utilization rate at high S loading
Budget Partners

Total project funding: $1075k
DOE share 100%

Funding received in FY21.:
$275k

« Brookhaven National Laboratory

« Thermo Fisher Scientific

« Energy Storage Materials Initiative
(ESMI)/PNNL
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« Advance the fundamental understanding of key factors (material and electrode levels)
that affect S reactions and cell lifespan under realistic high S loading and lean electrolyte
conditions.

« Rationalize low-porosity sulfur electrodes to boost both cell specific energy (Wh/kg) and
energy density (Wh/L), and to conserve more electrolyte to extend cell life.

« Design and scale up S cathode materials to support Battery500 Li-S pouch cell
demonstration.

* Project efforts are directly aimed at barriers of low practical energy density, shuttle effect,
low rate-capability, and limited cycling life of Li-S batteries.




s

Northwest Milestones
December 2020 Optimize electrode architecture to realize discharge Completed

capacity of >1000 mAh g in high loading S electrode
(>4 mg, cm) at very low porosity (< 45%).

March 2021 Build an electrode model to understand the effects of Completed
electrode porosity and tortuosity on the electrode
wetting and polysulfide migration.

June 2021 Enable a quasi-solid electrolyte networks by On track
introducing polymer or sulfide solid electrolytes into the
low porosity electrodes and realize cell operation at an
extremely low E/S ratio.

September 2021 |dentify compatible binder and solvent combinations to On track
enable the scale-up preparation of the quasi-solid
electrodes.
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Pacific Approach/Strategy
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 Build electrode model to simulate the impacts of material property/electrode
architecture on electrode wetting, Li-polysulfide migration, and S reaction
Kinetics.

« Optimize architectures of high-loading and low-porosity S electrode by
controlling S/C particle size.

« Study the effects of electrode architecture on cell performance at practical
conditions by using electrochemical and advanced characterization tools.

* Integrate polymer or inorganic solid Li* conductors into electrode to
enhance durability of Li* conduction network, extending cell life.
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Pacific
Northwest  |dentified challenges in realistic Li-S pouch cells

— |KB/S for pouch cell fabrication
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« The integrated Ketjen Black (IKB)/S composites were processed into high-loading electrodes
for pouch cell fabrication and evaluation.

« Shorter cycle life at higher energy: electrolyte depletion at the lean electrolyte conditions.

In collaboration with Dr. Lili Shi et. al. Battery500 consortium
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Pacific : :
Northwest ~LOW-porosity design to conserve more electrolyte

for longer cycling
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= Dependence of cumulative capacities of Li-S pouch cells on E/S ratio.

In moderately lean electrolyte region (3<E/S<10 mL g, 1), the cumulative capacity has a linear correlation
with E/S ratio.

In extremely lean region (E/S<3 mL g.!), accelerated decay is related to electrolyte distribution issue.
Saving more electrolyte through reducing electrode porosity to extend cell cycle life.
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Pacific
Northwest | ow-porosity cathode to improve energy and extend cell life
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S S A Reducing electrode porosity:

{[Jelectrolyte included
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Pros:

' * Improved electrode volumetric capacity.
| « Improved overall gravimetric capacity, if pore-

Voumetric Capacity (mAh/cm?)
Gravimetric Capacity (mAh/g)

filling electrolyte is counted.
« Save more electrolyte to support cell cycling.
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[ Cons:
- | » Worse electrode wetting
« Exaggerated Li-polysulfide shuttling

63%- |

Porosity (%)

Porosity (%)

52%-+ 52% . .
| l « Faster electrode passivation
45%- | 45% I
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Pacific
Northwest |dentified key factors to enable low-porosity sulfur electrode

» Electrode architecture dictates electrolyte
| permeability in low-porosity electrode.

103886

X » Electrolyte permeability is determined by not
only electrode tortuosity, but also the pore size
and its distribution.

139917

* Interconnected porous structures with
| reasonably distributed pore size are desired.
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= 3D reconstruction of FIB-SEM of low-porosity

sulfur electrode and flow simulation (>5 mg cm-?).
In collaboration with Dr. Zhao Liu et al. , Thermo Fisher Scientific
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Technical Accomplishments

Key considerations of low-porosity electrode:
Improving electrode wetting

Surface Wetting Degree (%)

------

» Electrode model was built for electrolyte flow
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= Simulations of electrolyte infiltration in large particle
cathode (LPC) and small particle cathode (SPC) at

same

electrode porosity.

In collaboration with Drs. Jie Bao, Zhijie Xu at PNNL
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Northwest Key considerations of low-porosity electrode:
suppressing polysulfide migration

NATIONAL LABORATORY
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= Simulations of Li-polysulfide migration in large particle
cathode (LPC) and small particle cathode (SPC) at
same electrode porosity.

Electrode model built to simulate Li-
polysulfide migration.

LPC has smaller Li-polysulfide diffusivity
compared with the SPC.

In SPC, Li-polysulfides more easily migrate
outside of the particle and electrode than in
LPC.
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RacHiC st Design principle of low-porosity electrode:
experimental validation
O Inner surfaces @ Outer surfaces ([ Electrolyte [J Polysulfides (PS)
SPC
LPC

Slow PS Outflow Fully Wetted Electrode

« S/C composite (IKB/S) with desired particle sizes were synthesized and used as example materials.
« Low-porosity electrode (porosity, ~45%) with large (LPC) and small (SPC) particles were fabricated.
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Pacific
Northwest  Impact of electrode architecture on cell performance

Lean Electrolyte (E/S ratio = 4 pyL/mg,)
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Performance of LPC and SPC cycled at lean electrolyte conditions and
different porosities (S loading: 4 mg./cm?, electrolyte/sulfur (E/S) = 4
HUL/mg,, i=0.1C, room temperature).
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Pacific
NeIYESt Impact of electrode architecture on sulfur reactions
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= Phase evolutions in dense LPC and SPC (porosity,
45%) at different depths of discharge monitored by
Synchrotron XRD

In collaboration with Dr. Peter Khalifah at Brookhaven National Laboratory
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Materials control through synthesis Scaling-up material synthesis for Battery500 pouch cell

Two Li-S patents licensed by industry this year

« Materials (IKB) with controllable particle size and integration degree.
« Scaling-up synthesis of IKB at 16 g/batch and provided to Battery500.




“ Collaboration and Coordination with Other

Pacific

Northwest  Institutions

Partnhers:

* Brookhaven National Laboratory: reaction mechanism study
 Thermo Fisher Scientific: material/electrode characterization
« ESMI/PNNL: electrode-level simulation

« Environmental Molecular Sciences Laboratory (EMSL)/PNNL.:
characterization
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« Short cycle life at both high-loading S cathodes and lean electrolyte conditions
* Depletion of electrolyte/additives
* Instability of Li metal anode and lack of effective strategies
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« Continue to understand material and electrode barriers by using experimental and
theoretical simulation tools.

« Improve electrode wettability and sulfur utilization rate at realistic conditions through
optimizing material functionality and electrode architecture.

« Suppress Li-polysulfide migration and redistribution and reduce its interference on Ll
anode.

« Identify optimal solid Li-ion conductor and liquid electrolyte combinations to extend the cell
cycle life at extremely lean electrolyte conditions.

Any proposed future work is subject to change based on funding levels
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1. Rationale of low-porosity electrode design was elucidated by theoretical simulation and
validated experimentally; S/C particle determines electrode architecture and affects
electrolyte permeability, Li polysulfide migration and sulfur reaction kinetics.

2. At a low porosity, the electrode comprising of large particles delivers superior sulfur
utilization, lower overpotential and better capacity retention over the small particle electrode.

3. By controlling material microstructure, high-mass-loading S electrodes (4 mg cm2) with
porosity of ~45% were demonstrated to deliver a high sulfur utilization rate (>1000 mAh g)
at very lean electrolyte conditions (E/S=4 uL mgY).

4. Optimized S/C cathode materials were scaled-up synthesized and transferred to Battery500
for pouch cell fabrication.
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FIooded Electrolyte (E/S ratio = 10 uL/mg,)
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Performance of LPC and SPC cycled at flooded electrolyte conditions and
at different electrode porosities (Electrode: 4 mg./cm?, electrolyte/sulfur
(E/S) = 10 pL/mg,, i=0.1C, room temperature).




