Thick Low-Cost, High-Power Lithium-Ion Electrodes via Advanced Processing

Jianlin Li, Alexander Kukay, W. Blake Hawley, Anand Parejiya, Dhrupad Parikh, Zhijia Du, David L. Wood, III Email: <u>lij4@ornl.gov</u> Phone: 865-574-4978 Oak Ridge National Laboratory

2021 U.S. DOE Vehicle Technologies Office Annual Merit Review

June 21-25, 2021

Project ID: BAT164

This presentation does not contain any proprietary, confidential, or otherwise restricted information

ORNL is managed by UT-Battelle for the US Department of Energy

Overview

Timeline

- Task Start: 10/1/14
- Task End: 9/30/22
- Percent Complete: 85%

Budget

- \$350k in FY20
- \$400k in FY21

Barriers

- Barriers Addressed
 - By 2022, further reduce EV battery-pack cost to \$80/kWh.
 - Advanced Li-ion xEV battery systems with low-cost electrode architectures.
 - Achieve deep discharge cycling target of 1000 cycles for EVs by 2022.

Partners

- Interactions/Collaborations
 - National Laboratories: ANL, SNL, INL
 - Universities: KIT, SUNY-Binghamton, University of Picardy Jules Verne, University of Arkansas
 - Battery Manufacturers: XALT Energy, Navitas Systems
 - Material Suppliers: PPG Industries, Targray, Superior Graphite, IMERYS, JSR Micro, Solvay Specialty Polymers, Ashland, Forge Nano
 - Equipment Manufacturer: Frontier Industrial Technology, B&W MEGTEC
- Project Lead: ORNL

Relevance & Objectives

- <u>Main Objective</u>: To improve cell energy and power density and reduce battery pack cost by manufacturing thick electrodes with tailored electrode architecture via advanced processing and high-energy, high-voltage cathode materials.
- Objectives in this period
 - Apply aqueous processing to Ni-rich layer oxides (NMC811 and NCA)
 - Fabricate thick (6-8 mAh/cm²), crack-free composite NMC811 cathode via aqueous processing
 - Develop tailored electrode architecture via freeze tape cast
 - Develop composite cathode via co-sintering of cathode and solid-state electrolyte
 - Characterize electrolyte imbibition rate in separator and simulate the electrolyte imbibition in lithium-ion cells
 - Assemble pouch cells with NMC811 and thick, tailored electrode architecture
 - Demonstrate a solid-state battery with an energy density ≥350 Wh/kg

Project Milestones

Status	SMART Milestones	Description
11/30/20	Quarterly	Installation and commission of the freeze tape caster (delayed to May 2021 due to COVID pandemic and rebuild in the electric circuit to meet NRTL standard)
3/31/21 Delayed by 3 months due to limited lab access during COVID-19 pandemic.	Annual Milestone (stretch)	Fabrication of thick multilayer electrode NMC811/graphite coating with high energy and power density at 8 mAh/cm ² . Quantify impedance (via AC impedance technique) of Gen 3 structured, multilayer anode and cathode coatings (multi-pass, dual slot-die coated, etc. at 8 mAh/cm ²) with different individual layer thicknesses and different total thicknesses to achieve >250 Wh/kg improvement in cell energy density; verify long-term performance by achieving no more than 40% capacity fade through at least 500 USABC 0.33C/-0/33C cycles. Demonstrate 40% of rated capacity at 2C discharge rate to show preservation of power density.
9/30/21 On track	Annual Milestone Go/No Go	Demonstration of a working solid-state battery with an areal loading with 3 mAh/cm ² , demonstrating 30 cycles under C/2 with 100% excess Li and >350 Wh/kg.

Project Approach

• Problems:

- Corrosion of aluminum foil from aqueous NMC slurry
- Cost effective methods of producing thick electrode architectures
- Cracking of thick coatings with water as solvent
- Lithium-ion mass-transport limitations thick electrodes
- Low performance of cathodes for solid-state batteries

• Technical approach and strategy:

- Evaluate stability of high-energy and high-voltage cathodes (NMC811, LMO, NCA) during aqueous processing
- Incorporate aqueous processing to fabricate NMC811 and NCA cathodes
- Fabricate crack-free NMC811 cathodes with high areal loading (6-8 mAh/cm²) via aqueous processing
- Freeze cast electrodes to overcome Li⁺ mass transport limitations
- Evaluate and simulate electrolyte imbibition in porous electrodes and separator
- Characterize advanced electrode microstructures
- Co-sinter cathode and solid-state electrolyte and evaluate cathode electrolyte compatibility

Project Approach – Pilot-Scale Electrode Processing and Pouch Cell Evaluation: DOE Battery Manufacturing R&D Facility (BMF) at ORNL

Planetary

Mixer (≤2 L)

Dual slot-die coater

Calender

Dry room for pouch cell assembly

- •Largest open-access battery R&D facility in US.
- •All assembly steps from pouch forming to electrolyte filling and wetting.
- •1400 ft² (two 700 ft² compartments).
- •Humidity <0.5% (-53°C dew point maintained).
- •Pouch cell capacity: 50 mAh 7 Ah.
- •Single- and double-sided coating capability.

•Current weekly production rate from powder to pouch cells is 50-100 cells.

PAA Acts as pH Modifier, Dispersant, and Binder, All-in-One to Enable Aqueous Processing for NCA Cathode

Uncalendered

Calendered

- Slurry components (CMC or TRD 202A binder, carbon black) do not influence slurry pH, though PAA (1 or 2 wt%, MW = 450,000 g·mol⁻¹) makes significant difference
- ĆMC imparts good electrostatic stability to NCA particles, PAA improves it even further
- PAA adsorbs to NCA particle surface (C=O peak in C 1s scan)
- PAA adsorption prevents detrimental Al dissolution (shift in Al 2p peak) that renders untreated particles incompatible with aqueous processing
- Very minor cracking in uncalendered aqueous-processed NCA cathode, issue is resolved with calendering

- Realistic cell conditions considered (graphite anode, N:P ratio = 1.1, capacity = 2.2 mAh·cm⁻², ~34% porosity)
- Initial discharge capacity lower for aqueous-processed cathode compared to NMP-processed baseline (160.4 vs. 181.5 mAh·g⁻¹) due to cation exchange
- Water-processed cathode reaches max capacity at Cycle 20 (168.5 mAh·g⁻¹) due to reverse cation exchange
- Aqueous-processed cell reaches 80% of initial discharge capacity at Cycle 600, baseline reaches 80% initial discharge capacity at Cycle 360 (predicted), crossover occurs at Cycle 388 (predicted)
- EIS, CV, and rate capability show higher charge transfer resistance (R_{ct}) in water-processed cathode than baseline
- Could optimize performance by reducing PAA amount or improving adhesion with current collector (corona treatment, chemical etching of current collector, etc.)

Developed Layer-Structured Cathodes to Improve Rate Performance

- Create layered structure with various particle size: 12 μ m and 4 μ m NMC 811, 1520 T and 1506 T graphite
- Double pass slot die coating
- 4 mAh/cm² per pass for a total of 8 mAh/cm²
- 30% porosity

 Smaller particle size→Increased storage modulus→ stronger binding network

Control Cell	Cell Variant 1	Cell Variant 2	
Cathode	Cathode	Cathode	
			Particle S
	000000000000		<mark>12 μm</mark>
			4 μm
			Mixed
Anode	Anode	Anode	

Particle Size	Power – Law Index	Yield Stress (Pa)
12 μm	0.42	4.17
4 μm	0.38	11.40
Mixed	0.42	5.62

9 Jianlin Li, DOE Annual Merit Review, June 21-25, 2021

Layer Structured Electrodes Improved Rate Performance

Figure 3. Rate performance comparison for single-layer pouch cells assembled with different single-layer cathode/anode combinations. The charge rate was held constant at C/5 while the discharge rate was varied. Each point is an average of 3 cells, and error bars represent the standard deviation of these 3 cells. (Wood, et al., Journal of Power Sources, under review)

 The three configurations with 2-layer structured electrodes demonstrated improved rate performance compared to the baseline (1-layer structure).

C-Rate (C)

Vational Laboratory

• Having a large particle in the bottom layer for the cathodes seems favorable to rate performance.

Characterized and Simulated Electrolyte Wetting

Separator/Electrode Sample	Porosity	$D_{th} (m^2/s \cdot 1e - 9)$	$D_{in} \left(m^2 / s \cdot 1e - 9 \right)$
Celgard 2325	39%	1.13 ± 0.06	
Celgard 2400	41%	1.48 ± 0.06	
Celgard 2500	55%	6.68 ± 0.59	
Uncoated Entek EPX	54%	2.11 ± 0.18	0.32 ± 0.06
Coated Entek EPX	54%	1.62 ± 0.23	4.75 ± 0.46
NMC532-NMP	55%	55.4 ± 3.70 [22]	55.4 ± 3.70 [22]
A12-NMP	55%	115.3 ± 4.30 [22]	115.3 ± 4.30 [22]

- Electrolyte wetting:
 - graphite anode > NMC cathode
 separator
- Created lattice Boltzmann model to simulate electrolyte wetting in batteries
- Able to determine correlation between saturation degree and electrode/electrolyte properties

Electrolyte impregnation on 3D within NMC electrode (Geometry of electrode from Tomography)

LRCS

Developed Graphite Anode via Freeze Tape Cast

Developed 2-Layer Structured Anodes Via Freeze Tape Casting and Demonstrated Improved Rate Performance

- Symmetric cell configuration with 50% SOC electrodes are used for rate capability studies
- ~20% improvement in charge capacity at 5C charge rate with 2-layer hybrid freeze tape cast anode

Developed 2-Layer Structured Cathodes to Improve Mechanical Integrity

14 Jianlin Li, DOE Annual Merit Review, June 21-25, 2021

Optimization of Composite Cathode by Co-Sintering of LLZO and NMC622

Composite cathode for solid state batteries

- Ion conduction pathway in cathode
- Porosity increases tortuosity of Li-ions
- Sintering can be utilized to reduce the number of pores in composite cathode
- Chemical stability of solid electrolyte and cathode particles at higher temperatures
- Porosity, conductivity and interphase trade-off

Resistance Decreased with Increasing NMC Content

Composite cathode sintered at 600 °C for 24 h in air

Composite cathode sintered at -

500 °C for 24 h showed high porosity and high ASR 700 °C for 24 h showed more resistive interphases and high ASR

Collaborations

- Partners
 - <u>National Labs:</u> Argonne National Laboratory, Sandia National Laboratory, Idaho National Laboratory
 - Battery Manufacturers: XALT Energy, Navitas Systems
 - <u>Active Material Suppliers</u>: Targray, Superior Graphite, Forge Nano
 - <u>Inactive Material Suppliers</u>: JSR Micro, Solvay Specialty Polymers, Ashland, IMERYS
 - <u>Equipment/Coating Suppliers:</u> PPG Industries, Frontier Industrial Technology, B&W MEGTEC, DataPhysics
 - <u>Universities</u>: KIT, Binghamton University, University of Picardy Jules Verne, University of Arkansas
- Collaborative Activities
 - Characterization of surface energy and electrolyte wetting with Binghamton University (weekly)
 - Electrolyte wetting simulation with University of Picardy Jules Verne (monthly)
 - Synthesis of small NMC811 particles with Dr. Ozge Kahvecioglu Ferdun at ANL (BAT167)
 - Binder selection and optimization with Solvay, Ashland, and JSR (bi-annual)
 - Sharing of results with strategic battery manufacturers (Navitas Systems and XALT)

COAK RIDGE

National Laboratory

Remaining Challenges and Barriers

Main Barriers

- Sluggish mass transport in thick electrodes
- Incompatibility between cathode and electrolyte in solid-sate batteries
- Lack of established processes in fabricating solid-state-batteries

Technical Challenges

- Development of low temperature densification method for composite cathode
- Development of processes to fabricate thin solid-state electrolyte with excellent conductivity and processibility
- Optimization of electrode architecture via freeze tape cast for low tortuosity and improved mass transport

Future Work

- Remainder of FY21
 - Fabricate composite NMC cathode with 3 mAh/cm² for solid-state batteries and characterize the cathode properties.
 - Fabricate polymer electrolyte for solid-state batteries.
- Into FY22
 - Optimize co-sintering of cathode and solid-state electrolyte.
 - Freeze tape cast NMC cathodes for solid-state battery application.
 - Optimize freeze tape casting conditions for low tortuosity electrode architecture.
 - Develop methods for densifying freeze-tape-cast electrodes.
 - Evaluate energy and power density of the electrodes.
 - Evaluate cathode and solid-state electrolyte interface.
- Commercialization: Highly engaged with potential licensees; high likelihood of technology transfer because of new processes and equipment compatibility; 3 total patents issued on aqueous processing methodologies.

Any proposed future work is subject to change based on funding levels.

Summary

- Objective: This project facilitates lowering the unit energy cost by up to 17% by addressing the expensive electrode coating and drying steps while simultaneously increasing electrode thickness.
- Approach: Develop green manufacturing with tailored electrode architectures to enable implementation of aqueous processed thick electrodes for high power performance.
 - Understand liquid-phase Li⁺ mass-transport limitations in high energy electrodes.
 - Develop electrode formulation and processing to enable thick electrode manufacturing.
 - Develop tailored electrode architectures to overcome Li⁺ mass-transport limitations.
 - Integrate aqueous processing with high-energy/high-voltage cathode materials.
 - Demonstrate and validate electrochemical performance in large format pouch cells.
 - Characterize surface energy of electrodes and evaluate electrolyte wetting in thick electrodes.
- Technical: Characterized compatibility of various cathode materials with aqueous processing; Enabled aqueous processing for NCA cathode fabrication; Fabricated thick, crack-free NMC811 cathodes (6-8 mAh/cm²); demonstrated excellent rate performance and cyclability of aqueous processed NMC811 cathodes; improved rate performance of thick NMC811 cathode via 2-layer and laser structuring, respectively; correlated electrolyte imbibition and processing relationship; Developed hybrid electrode structure via freeze tape cast; investigated co-sintering of composite cathodes for solid-state batteries.
- <u>Collaborators</u>: Extensive collaborations with national laboratories, universities, lithium-ion battery manufacturers, raw materials suppliers, and coating equipment manufacturers.
- <u>Commercialization</u>: 3 patents issued; high likelihood of technology transfer due to significant cost reduction benefits and equipment compatibility.

Selected Responses to Specific FY20 DOE AMR Reviewer Comments

Project not reviewed in 2020

Acknowledgements

- U.S. DOE Office of Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office (Program Managers: David Howell and Peter Faguy)
- ORNL Contributors:
 - David Wood
- Zhijia Du
- Claus Daniel
- Ritu Sahore
- Dhrupad Parikh
- Kelsey Grady
- Alexander Kukay Ilias Belharouak
- Blake Hawley
- Anand Parejiya

- External Technical Collaborators:
 - Ozge Kahvecioglu Ferdun
 - Congrui Jin
 - Ali Davoodabadi
 - Alejandro Franco
 - Abbos Shodiev

- Xiangbo Meng
- James Banas
- Gregg Lytle
- Shufu Peng

National Laboratory

