

Slashing PGM in Catalytic Converters: An Atoms-to-Autos Approach

Wei Li, General Motors Annual Merit Review (ACE 158) 6/23/2021

PGM: Platinum Group Metals

Societal Impact:

transportation

Sustainable U.S. manufacturing for clean

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start 15 October 2020
- Finish 30 December 2023
- 20% Complete

Funding

- Project Budget \$3.35 million
 - \$1.75M Federal Share
 - \$1.60M Cost Share
- 2020 funds received \$0
- 2021 funding planned \$0.47M

Vehicle Technology Barriers

- Low temperature emission performance
- High PGM loadings
- PGM sintering

Project Team

- General Motors, LLC
- Pacific Northwest National Lab
- University of Central Florida
- University of Virginia
- BASF Corporation

general motors

Acknowledgment: This material is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Vehicle Technologies Program Office Award Number DE-EE0009196.

Relevance

- Global demand for PGM is outstripping supply, driven by
 - increasing global production of vehicles with internal combustion engines
 - increasingly stringent emissions standards
 - higher emission control system durability requirements
- Overall Project Objectives
 - Develop catalysts with predominantly single-atoms or small ensembles to identify the most promising Pd and Rh structures for TWC catalysts

This atoms-to-autos approach aims to reduce PGM use in the U.S. vehicle fleet by 50% while meeting future emission regulations (including SULEV30)

Technical Approach

gm

- Overall Approach
 - Improve the utilization efficiency of PGMs in gasoline TWCs by engineering PGM sites and support materials with near 100% metal dispersion
 - Uses PGM single atoms as building blocks, not necessarily as sole catalytic centers
 - Material development effort will be supported by detailed kinetic studies and advanced characterization tools
 - Individual Pd and Rh catalysts with scalable preparation methods; rational washcoat structure design for integration and full-size validation
- 2021 Task Plan
 - Baseline catalyst technology definition (completed)
 - Design Pd and Rh Catalysts with Near 100% Material Efficiency and Optimal Catalytic Activities and Durability (on-going)
 - End-of-year Goal: Downselection of Technology Pathway for Individual Pd and Rh Catalysts

2021/2022 Milestones

Budget Period	Milestone	Description	Milestone or Go/No-Go Decision	Status
1	1.1	Definition of catalyst systems and experimental protocols	Milestone	Completed
	1.2	Evaluation of Pd and Rh species and support materials	Milestone	30% completed
	1.3	Desired optimal Pd, Rh species and supports identified and prepared	Milestone	Not started
	1.4	Proof of design concept to achieve performance measures	Go/No-Go Decision	N/A
2	2.1	Optimal supported Pd and Rh catalysts developed and prepared	Milestone	N/A
	2.2	Pd and Rh species optimized for aged performance	Milestone	N/A
	2.3	Optimized Pd and Rh catalysts after aging validated in core samples	Milestone	N/A
	2.4	Design concept optimized and aged performance validated	Go/No-Go Decision	N/A
general motors				

Technical Accomplishments

Baseline Catalyst Technology Defined

- 2020 GM vehicle with turbo-charged 2L engine
 - State-of-the-art catalyst technology
- Baseline Pd and Rh Catalysts
 - Powder and core samples
 - Degreened and Aged
- Aging Conditions (LTAT protocols):
 - Degreen: 700°C hydrothermal 2 hours
 - Aging: lean-rich 1025°C for 50 h
 - Powder samples degreened and aged at GM and distributed to team members: <u>consistent baseline</u>

- Baseline Pd catalyst contains Pd nanoparticles in the fresh state and these particles grow significantly after aging.
- This confirms the potential benefit of singleatom catalyst approach
- Initial Pd and Rh catalyst concepts in preliminary screening stage

Collaborations

- BASF (Y. Li, X. Zheng)
 - Baseline catalysts (powder, core)
 - Catalyst scale-up and washcoat design; full-size part preparation

University of Central Florida (F. Liu)

- Support engineering
- Single-atom catalyst development

University of Virginia (W. Epling)

- Catalyst aging study
- Reaction kinetics and mechanism

Pacific Northwest National Lab (K. Rappe, N. Nelson)

- Catalyst characterization
- General Motors (W. Li, K. Gu)
 - Overall project management
 - Single-atom catalyst development; system level demonstration

Proposed Future Research

- Budget Period One (10/2020 12/2021):
 - Identify desired PGM species and anchor on engineered supports
 - Down select pathways to catalyst designs with potential for ≥60% PGM reduction
- Budget Period Two (1/2022 12/2022):
 - Concurrent optimization of the PGM species and the engineered supports
 - Demonstrate ≥60% PGM content reduction in core sample form
- Budget Period Three (1/2023 12/2023):
 - Transform powder and core samples to full-size, fully formulated catalysts
 - Provide pathway to 50% PGM cost savings

Summary

- Extensive collaboration among the team partners
- Test protocols established (aging, testing)
- Baseline catalyst technology defined and assessed
 - Fresh, degreened, and aged
 - Powder and core samples
- Initial Pd and Rh concepts in catalyst screening stage
 - Single atoms and small ensembles
 - Engineered supports