

Partnership for Advanced Combustion Engines (PACE) – A Light-Duty National Laboratory Combustion Consortium

Isaac Ekoto, Matthew McNenly (presenter), Paul Miles, Sibendu Som, Jim Szybist

VTO Annual Merit Review June 22, 2021, 10:00 am EDT Project ACE138

Acknowledgements: Michael Weismiller, Technology Manager Gurpreet Singh, Program Manager *This presentation does not contain any proprietary, confidential, or otherwise restricted information.*

LLNL-PRES-822524

Auspices statements for the national laboratories

- This presentation has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.
- This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
- This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Vehicle Technologies Office.
- This work was performed under the auspices of the U.S. Department of Energy by Oak Ridge National Laboratory under Contract DE-AC0500OR22725.
- This work was performed at the Combustion Research Facility, Sandia National Laboratories, Livermore, CA. Support
 was provided by the U.S. Department of Energy, Office of Vehicle Technologies. Sandia National Laboratories is a
 multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a
 wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security
 Administration under contract DE-NA0003525.

Overview

Timeline

5-year program

- Start Date: FY19 Q3
- End date: FY23 Q4

• Percent complete: ~46%

US fiscal years run from October 1 through September 30

Budget

- Total PACE FY21 budget \$8,920K
- Approximate allocations
 - Knock/LSPI mitigation ~ 30%
 - Dilute combustion ~ 30%
 - Emissions reduction ~ 40%

Budget breakdown by task provided in reviewer only slides

Barriers and Technical Targets*

- Development of enhanced understanding and predictive models to address:
 - Limits to SI engine efficiency (knock/LSPI)
 - Barriers to highly dilute combustion
 - Emissions reduction (cold start)
 - * Aligned with USDRIVE ACEC Tech Team Priority 1: Dilute gasoline comb.

Partners

- ANL, LLNL, NREL, ORNL, SNL
- USDRIVE ACEC Tech Team

Project leads

- I. Ekoto (SNL)
- S. Som (ANL)
- M. McNenly (LLNL) J. Szybist (ORNL)

Approximately 400 million light-duty vehicles with ICEs will be sold in the US between now and 2050 (2.4 billion worldwide)

- Improving ICE efficiency is a critical element of a path toward lower petroleum consumption and greenhouse gas emissions
- Tailpipe pollutant emissions can be reduced to near zero – alleviating urban environmental concerns
- US competitiveness secures over 900K manufacturing jobs (Mar. 2021 -U.S. Bureau of Labor Statistics)

Relevance | Improved ICEs are key to energy and environmental security

Our end-goal will be reached through progress in three key areas:

- Knock and LSPI mitigation for stoichiometric SI engines
- Improving stability & efficiency of highly dilute combustion
- Reducing emissions to a zero-impact level (focus on cold-start)

Relevance | Improved ICEs are key to energy and environmental security

Maximize conventiona SI efficiency & power density Unlock highefficiency dilute combustion

- Improved knock and LSPI control
 - Near-term benefit with potential for > 5% efficiency improvement

- Highest potential efficiency gains but significant barriers
 - Mid-term, high EGR stoichiometric for > 12% efficiency gain

- Deeper understanding of cold start physics and chemistry enables numerically-aided design and calibration
 - Tier 3 Bin 20 emissions levels and beyond

Approach | Research is aligned with industry priorities and workflows

- Strong alignment with USDRIVE ACEC Tech Team
- Ab initio engagement on plans and <u>success measures</u>

Approach | Leverages DOE investment in HPC and ML/AI

• HPC will be used as a microscope – illuminating processes that are inaccessible to experimentation

Source: ANL

 HPC simulations provide a benchmark for accuracy of engineering simulations

- Machine learning and pattern recognition will be applied to
 - Resolve decades-old problems (*e.g.* root causes of cyclic variability)
 - Detect and mitigate abnormal combustion (instability, knock, LSPI, misfire)
 - Develop expert systems enabling optimal CFD-based design
 - Develop data-driven efficient sub-models

Approach | All tasks support 7 Major Outcomes

Improved knock and LSPI control

Major Outcome 1: Models for combustion system analysis accurately predict knock response to design changes

<u>Success measure</u>: Simulation of changes in engine geometry or operating conditions predicts the change in KLSA within 1 degree over the knock limited operating range of the engine, with a 5X reduction in simulation time.

Major Outcome 2: Data analytics enable operation and real-time control to mitigate knock/LSPI

Success measure: before knock occur Similar machine learning tasks for Dilute and Cold Start pillars leading to GO/NO-GO for FY23 engine validation

least 10 CAD

Major Outcome 3: Develop new multi-step phenomenological mechanism for LSPI that captures wallwetting, lubricant, and geometry effects

<u>Success measure</u>: Phenomenological model captures relevant physical causes of preignition and demonstrates pathways to reduce the occurrence of LSPI by 50%.

Major Outcome 4: Improved high-load igniter performance and igniter durability enabled by predictive modeling

<u>Success measure</u>: An ignition model including spark-plug geometry and electrical discharge circuit details predicts spark stretch, blowouts and restrikes, and flame initiation, propagation and quenching. The model can accurately predict 0-5% mass burned fraction within 10% (mean and standard deviation).

Approach | All tasks support 7 Major Outcomes

High-efficiency, low-variability dilute combustion systems

Major Outcome 5: Major Outcome 5: Homogeneous and stratified lean/dilute engine efficiency and emissions are accurately predicted

<u>Success measure</u>: Validated simulations predict the change in burn duration and COV (to within 10%) relative to a baseline configuration for a change in engine design at 30% dilution and ACEC 3 bar/1300 rpm test point.

Major Outcome 6: Develop viable advanced igniters and control methods that expand existing dilution limits and enable stable catalyst heating operation

<u>Success measure</u>: Prototype igniters and control strategies ignition control methods enable stable ignition for EGR dilution rates of up to 40% or air dilution rates of up to 50% with no adverse impact on pollutant emissions relative to the stock OEM configuration. Demonstrate ignition system can maintain stable combustion at high exhaust heat flux conditions seen during cold start. ACEC 3 bar/1300 rpm test point.

Major Outcome 7: ignition combustion Success measure: Co and a pathway identifi

PACE sharpens research focus on tasks with greatest relevance to the light-duty OEMs

pression

100 N-m-s⁻¹ erating points

Approach | All tasks support 7 Major Outcomes

Cold-start design and calibration capability

Major Outcome 8: Validated cold start modeling capability that accurately predicts injection and spark timing trends on:

- Cold-start engine-out emissions
- Combustion phasing and stability
- Exhaust heat losses and oxidation (accurate catalyst feed-gas enthalpy and composition)

Success measures:

- > 80% accuracy in predicting engine-out emissions and stability for nominal conditions (relative error in emission level < 20%)
- ACEC cold start protocol COV must be less than 20% (> 80% accuracy)
- > 80% accuracy predicting feed-gas emissions and stability for operating conditions matched to PACE cold-start experimental data set
- > 90% accuracy in predicting heat losses in hot end exhaust for varying heat flux conditions

Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2)

Photo Credit: A. Eckert, MSMI, D. Higgins, MAMS

- All national labs shutdown March 2020, except ORNL
- Supercomputing resources diverted to emergency COVID-19 projects.
- Experimental facilities started returning to service Summer 2020 (except ANL APS and ORNL SNS).
- Simulation and theory teams at ANL, LLNL, NREL, ORNL, and SNL are still remotely working.
- Most milestones were delivered on time, while nearly all those that were late were delayed only 3 months (or less).

True testament of the ingenuity and team spirit of the PIs to adapt to the new reality, reprioritize tasks, and continue steady progress on the PACE objectives

Accomplishment | PACE 2.3L common platform engine purchase complete

- PACE engine contract awarded to AVL Sept. 2020 for two engines
- Common platform designed to match a production 2.3L turbocharged engine as closely as possible
 - ANL metal single-cylinder engine
 - SNL optical single-cylinder engine
- AVL delivery on-track for Nov. 2021
- ORNL to install two similar engines
 - single cylinder with multi-cylinder block (on-track for Q3FY21)
 - multi-cylinder for cold-start tests

273 C

AVL thermal design captures multi-cylinder wall temperatures

metric	RD5-87(#2A)	PACE-1	PACE-20	EPA Tier III
RON ¹	92.3	91.8	92.1	92.3
MON ¹	84.6	82.3	84.5	84.5
H:C ¹	1.98	1.97	1.97	1.96
density [g/mL] ¹	0.75	0.75	0.74	0.75
PMI ²	1.68	1.56	1.50	
	D86	D86	D86	D86
T ₁₀ [C] ¹	57.8	60.4	57.9	52.7
T ₅₀ [C] ¹	101.3	100.6	89.9	91.2
T ₉₀ [C] ¹	157.9	165.8	166.0	159.5

¹ Measurements from SWRI and Gage (ASTM D2699, D2700, D5291, D4052, D86)

² Calculated from DHA (ASTM D6729)

- Extensive validation completed since AMR20:
 - low and intermediate heat release in engine and RCM (ace139 Wagnon)
 - free spray plumes (ace143 Powell)
 - spray wall interaction (ace144 Pickett)
 - spray collapse in engines (ace167 Torelli)
 - soot volume fraction (ace168 Manin)
 - soot pyrolysis (ace168 Manin)
 - flame speed (ace139 Wagnon)
 - improved chemistry (ace139 Wagnon)
- 15 barrels (54 gal.) ordered from Gage
- 7 barrels of PACE-20 BOB also ordered

Accomplishment | Discontinued FY20 project to bolster investment in 4 areas

Focused PACE on two DOE Exascale Computing Program codes leveraging \$18M ASCR investment in NEK5000 (\$8M) and Pele (\$10M)

Dedicated CFD integration tasks for Major Outcomes 1 and 5 to quantify new models:

- spray-wall

- spray nozzle

- ignition
- flame quenching
- turbulent-chemistry emissions
- conj. heat transfer algorithmic speedup

Securing common set high-pressure injectors

- 25 Bosch Motor Sports injectors (500 bar)
- complete laser light sheet patternation data
- best match will be the primary set with the rest serving as spares for the program

Increased Spray Simulation Task Support

- full accuracy test 17 free spray conds.
- spray w/cross flow vaporization in VOF
- near-field plume corrections
- non-flashing vaporization
- discrete particle to Eulerian for wall films

Built new optimization tools for accurate and smaller reduced mechanisms

- Eliminates main human-in-the-loop iteration
- Easily optimize over 80 reactions (simult.)
- 10⁸ ignition calculations used in a month to reduce PACE-20 model to 315 species

Accomplishment | 1 month with new tools is set to save an expected 25% in CFD costs

Accomplishment | Baseline CFD performance established on success measures

PA

Response to last year's reviewer comments (wt. avg. = 3.35/4)

• **Q1 Reviewer 5:** "Delivering a usable, open-source product to OEMs is a key target... consider implementing technology transfer metrics into the program to track adoption."

The PACE leadership team has developed a "modeling menu" for the OEMs as part of our ongoing collaboration with the USDRIVE ACEC Tech Team. This document describes the features of more than 35 current sub-models, fuel mechanisms, tools, and best practices created or under development in the program that are available to the OEM and academic partners through PACE. It is a good idea to augment this document to include usage statistics by the OEMs for internal analysis and future reviews.

• Q1 Reviewer 5: "[T]here will need to be close connection to, support from, and endorsement by engine manufacturers that the technologies being developed are of interest and have the potential to be commercially viable. Especially for novel combustion programs, such as Major Outcomes 5 and 7"

PACE removed Major Outcome 7 (low temperature gasoline combustion) and the lean ignition research in Major Outcome 5 to further increase the program's focus and speed development on the highest impact barriers for light-duty engines. The PACE leadership team is also actively helping the OEMs in the USDRIVE ACEC Tech Team to create the next roadmap extension for light-duty vehicle research.

• Q1 Reviewer 5: "While recognizing that the move to a single engine platform may increase the speed to deliver modeling advancements, this reviewer was concerned that limiting to one engine design will impact the ability to deliver model validation. Improved, validated, modeling tools should be engine-agnostic and validated across a range of different engine platforms"

The PACE program will continue with two engines in FY22 at ANL, SNL and ORNL: the existing SG2, and the new PACE common platform. We agree that the modeling advancements should be independent of the engine. However, the benefit of learning simultaneously about sub-model performance on different experimental campaigns is too great given our mandate to move our research faster on a limited budget. The new platform will eliminate uncertainties attributed to different geometries and will increase confidence in the relevance of the models by predicting performance in a modern spark-ignition engine. Further, the success measures for Major Outcomes 1, 5, and 8 are for a blind prediction of a substantial design change, which forces the models to be as engine-independent as possible.

Program-Level Collaborations

- USDRIVE ACEC Tech Team invited PACE leadership to help create the next extension to the light-duty vehicle research roadmap
- Advanced Engine Combustion MOU partners
 - Light-duty OEMs Ford, General Motors, Stellantis (formerly FCA)
 - Heavy-duty OEMs Caterpillar, Cummins, Daimler, GE, John Deere, Navistar, PACCAR, Progress Rail, Volvo, Wabtec
 - Energy companies BP America, Chevron, ExxonMobil, Marathon, Phillips 66, Shell
 Commercial CFD ANSYS, Convergent Science, Gamma Tech., Siemens
- Overlap and synergies with Co-Optima on a project level
- More than 50 additional project-level collaborations with U.S. and international universities and private/public research institutions

Added FY20

Project-Level Collaborations

Manufacturers

Ford (2) General Motors (5) Hyundai Stellantis Toyota

Suppliers

Bosch Bosch Motor Sports Delphi Hyundai KEFICO Mahle Tenneco Transient Plasma Sys.

Software Vendors

ANSYS AVL FIRE Convergent Science (6) Gamma Tech (2) Pointwise Siemens/StarCCM+

Fuels & Lubricants

Aramco Chevron Lubrizol

Research Councils

Comp. Chem. Consort. Coordinating Research Council IFP Energies Nouvelles Inst. Motori (STEMS)

Universities

AIST, Japan Auburn City U. London CMT U. Polit. Valencia Colorado St. Imperial College lowa St. LTT Erlangen KAUST (3) Marquette U. Michigan Tech. Natl. U. Ireland – Galway Polit. Milano

Princeton **RWTH Aachen** TU Darmstadt UC Davis U. Central Florida U. Connecticut U. Hawaii U. Illinois U-C U. Mass. Amherst U. Mass Dartmouth U. Sci. Tech. of China U. Southern Calif. U. Texas

Government

Army Research Laboratory

Remaining Challenges and Barriers

- Coordinate PACE advances for +20 sub-models while evaluating their performance against four Major Outcomes (1, 4, 5 & 8) and prioritizing their future development with limited time and money.
- Leverage insight across different experimental campaigns simultaneously.
- Ensure that the proposed research can deliver significant efficiency gains (CO₂ savings), and emissions reductions.

• Accelerate knowledge and tool transfer to industry including the engine design workflows for the production engineers.

ADOPT

ш

БП

S

IMPACT

Future Work | Any proposed future work is subject to change based on funding levels

- CFD Integration tasks for high-load knock (MO #1), dilute cyclic variability (MO #5), and cold start (MO #8) will report first integrated comparison of new PACE models at August AEC meeting
- Common PACE engines will be installed at ANL, SNL and ORNL
- PACE leadership team will help the OEMs develop the next ACEC Tech Team roadmap over the summer
- PACE simulation experts continue to update the public "modeling menu," which contains +35 sub-models, mechanisms, tools, and best practices
 - and create a public website to connect stakeholders with the resources
- Zero-RK 3.0 release (planned for Aug. 2021) will include: simplified interface to link with CFD codes, mechanism optimization tools, counterflow diffusion flames, PSR, and IC engine models

- and create common flame tables for the recommended PACE-20 mechanism

ADOPT

SPEI

IMPACT

Summary

Relevance

- ICE powered vehicles will be a significant component of the US fleet for many decades
- Significant improvements in both emissions and efficiency are possible and needed to meet environmental goals

Approach

- The work plan for PACE is focused on three key areas and is developed in coordination with the USDRIVE ACEC Tech Team
- Coordinated collaborations across 7 Major Outcomes using kinetics, fundamental measurements and engine experiments feeding into improved models

Programmatic Accomplishments

- Purchased common PACE engine platform single cylinder at ANL (metal) and SNL (optical), and single and multi at ORNL
- Recommended PACE-20 surrogate with more than a dozen new validation experiments
- Discontinued FY20 project to bolster investment in 4 areas: CFD integration tasks, spray models, new 500 bar injectors, and mechanism reduction tools
- Baseline CFD performance established on success measures for Major Outcomes 1, 5, and 8

Collaboration and Coordination

- PACE is a collaboration among five national laboratories working towards common objectives
- US DRIVE ACEC Tech Team, AEC MOU industry stakeholders, Commercial CFD, Co-Optima
- More than 50 project-level collaborations with U.S. and international universities and private/public research institutions

Proposed Future Research (any proposed future work is subject to change based on funding levels)

- Promoting closer coordination and increased relevance with a common, modern engine platform and gasoline surrogate
- Enhancing industry adoption of software and modeling tools by continually refining the hand-off with the ACEC tech team
- Building partnerships with other DOE offices on HPC, ML/AI, and Basic Energy Science

Technical Back-up Slides

24

Complete PACE Budget FY21

Code and Work Flow Development				
	Lab	PI	FY20	FY21
A.M.05.01 Spray and Combustion model implementation	ANL	Ameen	350k	340k
A.M.05.02 Gridding, validation, and workflow development	ANL	Ameen	350k	300k
A.M.05.04 MO1 Integration	ANL	Som		75k
A.M.05.05 MO5 Integration	ANL	Scarcelli		75k
L.M.05.01 Accelerated multi-species transport in engine simulations	LLNL	Whitesides	275k	250k
L.M.05.02 Improved chemistry solver performance with machine learning	LLNL	Whitesides		250k
L.M.05.04 Scalable performance and CFD integration of ZERO-RK	LLNL	Whitesides	275k	75k
L.M.05.06 Mechanism Reduction	LLNL	Whitesides		75k
L.M.05.07 Accelerate Mechanism Reduction Tools	LLNL	Whitesides		75k
Cold Start	Lab	PI	FY20	FY21
O.E.07 Multi-cyl Cold Start & surrogate testing	ORNL	Curran	350k	350k
S.E.07 Engine experiments characterizing wall films & PM formation	SNL	Sjoberg	270k	270k
Compustion and Emissions				
	Lab	PI	FY20	FY21
O.E.02 Effectiveness of EGR to mitigate knock throughout PT domain	ORNL	Szvbist	220k	175k
S.E.02 Experiments supporting particulate modeling wall film & pyrolysis	SNL	Manin	500k	400k
L.M.01 Improved Kinetics for Ignition Applications	LLNL	Pitz	150k	
S.M.02.01 DNS and modeling of turbulent flame propagation & end gas ignition	SNL	Chen	50k	50k
S.M.02.02 Flame wall interactions	SNL	Nguyen	150k	50k
S.M.02.03 Engineering PAH Model Development	SNL	Hansen		100k
	1			
Data Analytics				
Data Analytics	Lab	PI	FY20	FY21
O.E.08 Machine Learning and Nonlinear Dynamics	ORNL	Kaul	200k	200k
Flows and Heat Transfer				
	Lab	PI	FY20	FY21
O.E.06.01 Neutron diffraction for in situ measurements in an operating engine	ORNL	Wissink	100k	100k
O.E.06.02 Neutron Imaging of Advanced Combustion Technologies	ORNL	Wissink	200k	200k
O.M.06 Conjugate heat transfer	ORNL	Edwards	350k	350k
LA.M.06.01 Heat Transfer through Engine Metal	LANL	Carrington	200k	
LA.M.06.02 Heat Mass Transfer in Liquid Species	LANL	Carrington	200k	

O.E.06.01 Neutron diffraction for in situ measurements in an operating engine ORNL Wissink 100 100 O.E.06.02 Neutron Imaging of Advanced Combustion Technologies ORNL Wissink 200k 200 O.M.06 Conjugate heat transfer ORNL Edwards 350k 350k I.A.M.06.01 Heat Transfer through Engine Metal LANL Carrington 200k I.A.M.06.02 Heat Mass Transfer in Liquid Species LANL Carrington 200k Fuel Kinetics and Surrogates Lab PI FY20 FY2 A.E.01 Measurements of autoignition fundamentals at dilute gasoline conditions ANL Goldsborough 280k 252 L.M.01 Surrogates and Kinetic Models LINL Vitx Kukadapu 200k 200k Ignition Ignition engine development SNL Kukadapu 200k 200k A.M.03 Advanced Ignition Koperiments ANL Rockstroh 380k 42c S.M.03.01 DNS of early ignition Kernel development SNL Neuton 420k 420k S.M.03.02 Physics based flame-kernel LES modeling	Flows	and Heat Transfer	Lah	DI	EV20	EV21
0.1.00.01 Neutron Imaging of Advanced Combustion Technologies ORNL Wissink 200k 200 0.6.06.02 Neutron Imaging of Advanced Combustion Technologies ORNL Edwards 350k 350 LA.M.06.01 Heat Transfer through Engine Metal LANL Carrington 200k LA.M.06.02 Heat Mass Transfer in Liquid Species LANL Carrington 200k Fuel Kinetics and Surrogates A.E.01 Measurements of autoignition fundamentals at dilute gasoline conditions ANL Goldsborough 280k 252 L.M.01 Surrogates and Kinetic Models LINL Pitz 500k 425 L.M.01 Surrogates and Kinetic Models LINL Pitz 500k 425 L.M.03 Advanced Ignition Modeling Tools ANL Scarcelli 400k 70 A.M.03 Advanced Ignition kernel development SNL Chen 100k 100k 100k S.M.03.01 DNS of early ignition kernel development SNL Neu Nguyen 100k 420k 420k 420k 420k 420k 420k 420k 420k 420k	O F 06 01	Neutron diffraction for in situ measurements in an operating engine		Wissink	100k	100k
O.M.06 Conjugate heat transfer ORNL Eduards 350k 350 LA.M.06.01 Heat Transfer through Engine Metal LANL Carrington 200k LA.M.06.02 Heat Mass Transfer in Liquid Species LANL Carrington 200k Fuel Kinetics and Surrogates Lab PI FY20 FY2 A.E.01 Measurements of autoignition fundamentals at dilute gasoline conditions ANL Goldsborough 280k 252 L.M.0.02 Models for improved prediction of PAH/soot LINL Vikkadapu 200k 200 Ignition Lab PI FY20 FY2 FY20 FY2 A.M.03 Advanced Ignition Modeling Tools ANL Scarcelli 400k 377 N.M.03 ML based LES ignition model NREL Yellapantula 275k 275 S.M.03.01 DNS of early ignition kernel development SNL Chen 100k 100 S.E.03.02 Fundamental Ignition Experiments ANL SNL Rockstroh 420k 420 S.E.03.02 Fundamental ignition experiments SNL Ekoto	O F 06 02	Neutron Imaging of Advanced Combustion Technologies	ORNI	Wissink	200k	200k
LAM.06.01 Heat Transfer through Engine Metal LANL Carrington 200k LA.M.06.02 Heat Transfer through Engine Metal LANL Carrington 200k Fuel Kinetics and Surrogates Lab PI FV20 FV2 A.E.01 Measurements of autoignition fundamentals at dilute gasoline conditions ANL Goldsborough 280k 252 L.M.01 Surrogates and Kinetic Models LINL Pitz 500k 425 L.M.01.02 Models for improved prediction of PAH/soot LINL Kukkadapu 200k 200 Ignition Lab PI FV20 FV2 FV2 A.M.03 Advanced Ignition Modeling Tools ANL Scarcelli 400k 37 N.M.03 ML based LES ignition model NREL Yellapantula 275k 275 S.M.03.01 DNS of early ignition kernel development SNL Chen 100k 100 A.E.03 Fundamental Ignition Experiments ANL Rockstroh 380k 344 S.E.03.02 Fundamental ignition experiments SNL Ekoto 420k 420k	0 M 06	Conjugate heat transfer	ORNI	Edwards	350k	350k
LA.M.06.02 Heat Mass Transfer in Liquid Species LANL Carrington 200k Fuel Kinetics and Surrogates Lab PI FY20 FY2 A.E.01 Measurements of autoignition fundamentals at dilute gasoline conditions ANL Goldsborough 280k 252 LM.01 Surrogates and Kinetic Models LINL PI rest 500k 425 LM.01.02 Models for improved prediction of PAH/soot LINL Kukkadapu 200k 200k Ignition Lab PI FY20 FY2 FY2 A.M.03 Advanced Ignition Modeling Tools ANL Scarcelli 400k 37 N.M.03 ML based LES ignition model SNL Chen 100k	LA.M.06.01	Heat Transfer through Engine Metal		Carrington	200k	550K
Fuel Kinetics and Surrogates A.E.01 Measurements of autoignition fundamentals at dilute gasoline conditions ANL Goldsborough 280k 252 LM.01 Surrogates and Kinetic Models LINL PI z Stook 252 LM.01.02 Models for improved prediction of PAH/soot LINL PI z Stook 252 LM.01.02 Models for improved prediction of PAH/soot LINL Kukkadapu 200k 200k Ignition Lab PI FY20 FY2 A.M.03 Advanced Ignition Modeling Tools ANL Scarcelli 400k 37 N.M.03 DNS of early ignition kernel development SNL Chen 100k 100k S.M.03.01 DNS of early ignition Experiments ANL Rockstroh 380k 34 S.E.03.01 Advanced Ignition experiments ANL Rockstroh 380k 34 S.E.03.02 Fundamental ignition experiments SNL Ekoto 420k 420k S.E.03.02 Fundamental ignition experiments SNL Ekoto 420k 420k S.E.04.03 Fundamental ignition expe	LA.M.06.02	Heat Mass Transfer in Liquid Species	LANL	Carrington	200k	
Lab PI FY20 FY20 A.E.01 Measurements of autoignition fundamentals at dilute gasoline conditions ANL Goldsborough 280k 252 L.M.01 Surrogates and Kinetic Models LLNL Pitz 500k 425 L.M.01.02 Models for improved prediction of PAH/soot LLNL Kukkadapu 200k 200k Ignition Lab PI FY20 FY2 FY2 A.M.03 Advanced Ignition Modeling Tools ANL Scarcelli 400k 377 N.M.03 ML based LES ignition model NREL Yellapantula 275k 275 S.M.03.01 DNS of early ignition kernel development SNL Chen 100k 100k S.E.03.02 Pundamental Ignition Experiments ANL Rockstroh 380k 342 S.E.03.02 Fundamental ignition experiments SNL Ekoto 420k 420k S.E.03.02 Fundamental ignition experiments SNL Ekoto 420k 420k S.E.04 Spray Sulley of Fuel Injection and Sprays ANL Powell 490k 441	Fuel Ki	netics and Surrogates				
A.E.01 Measurements of autoignition fundamentals at dilute gasoline conditions ANL Goldsborough 280k 252 L.M.01 Surrogates and Kinetic Models LLNL Pitz 500k 425 L.M.01.02 Models for improved prediction of PAH/soot LLNL Kukkadapu 200k 200k Ignition Lab Pi FY20 FY2 A.M.03 Advanced Ignition Modeling Tools ANL Scarcelli 400k 377 N.M.03 ML based LES ignition model SNL Chen 100k 100 S.M.03.01 DNS of early ignition kernel development SNL Nguyen 100k 100 A.E.03 Fundamental Ignition Experiments ANL Rockstroh 380k 342 S.E.03.02 Fundamental ignition experiments SNL Ekoto 420k 420k LSPI Lab Pi FY20 FY2 O.E.09.01 Fuel spray wall wetting and oil dilution impact ORNL Splitter 220k 220k S.E.04 Spray Experiments SNL Powell 490k 441 O.E.04.01 <td>Tuerik</td> <td>neties and surrogates</td> <td>Lab</td> <td>PI</td> <td>FY20</td> <td>FY21</td>	Tuerik	neties and surrogates	Lab	PI	FY20	FY21
L.M.01 Surrogates and Kinetic Models L.M.01 Surrogates and Kinetic Models L.M.01.02 Models for improved prediction of PAH/soot L.N.01.02 Models for improved prediction of PAH/soot Lab PI FY20 FY2 A.M.03 Advanced Ignition Modeling Tools A.N.03 ML based LES ignition model N.REL Yellapantula 275k 275 S.M.03.01 DNS of early ignition kernel development S.M.03.02 Physics based flame-kernel LES modeling S.M.03.02 Physics based flame-kernel LES modeling A.E.03 Fundamental Ignition Experiments ANL Rockstroh 380k 342 S.E.03.01 Advanced Ignition to Enable Alternative Combustion Modes S.N.L Ekoto 420k 420k LSPI O.E.09.01 Fuel spray wall wetting and oil dilution impact C.E.09.01 Fuel spray wall wetting and oil dilution impact A.E.04 X-Ray Studies of Fuel Injection and Sprays A.E.04 Spray Experiments S.L Pickett S.E.04.03 GDI sprays leadership & data sharing S.E.04.03 GDI sprays leadership & data sharing S.E.04.03 GDI sprays leadership & data sharing A.M.04 Towards Predictive Simulations of Sprays in Engines ANL Torelli	A.E.01 N	Aeasurements of autoignition fundamentals at dilute gasoline conditions	ANL	Goldsborough	280k	252k
LM.01.02 Models for improved prediction of PAH/soot Ignition A.M.03 Advanced Ignition Modeling Tools A.M.03 ML based LES ignition model N.M.03 ML based LES ignition model N.M.03 ML based LES ignition kernel development S.M.03.01 DNS of early ignition kernel development S.M.03.02 Physics based flame-kernel LES modeling A.E.03 Fundamental Ignition Experiments S.E.03.01 Advanced Ignition to Enable Alternative Combustion Modes S.E.03.02 Fundamental ignition experiments S.E.03.02 Fundamental ignition experiments S.E.03.02 Fundamental ignition experiments S.E.03.02 Fundamental ignition experiments S.E.04 Advanced Ignition and Sprays A.E.04 X-Ray Studies of Fuel Injection and Sprays A.E.04 Spray Experiments S.E.04.03 GDI sprays leadership & data sharing S.E.04.03 GDI sprays leadership & data sharing A.M.04 Towards Predictive Simulations of Sprays in Engines A.M.04 Towards Predictive Simulations of Sprays in Engines A.M.04 Torelli 300k 220C A.M.04.01 Improved free spray and spray-wall interaction modeling A.M.04 Torelli 1 fuel spray wall on provement on the spray wall interaction modeling A.M.04 Torelli Improved free spray and spray-wall interaction for the spray spray-wall interaction for the spray for the spray for t	L.M.01 S	urrogates and Kinetic Models	LLNL	Pitz	500k	425k
Ignition Lab PI FY20 FY2 A.M.03 Advanced Ignition Modeling Tools ANL Scarcelli 400k 37 N.M.03 ML based LES ignition model NREL Yellapantula 275k 275 S.M.03.01 DNS of early ignition kernel development SNL Chen 100k 100 S.M.03.02 Physics based flame-kernel LES modeling SNL Nguyen 100k 100 A.E.03 Fundamental Ignition Experiments ANL Rockstroh 380k 342 S.E.03.01 Advanced Ignition experiments SNL Ekoto 420k 420 S.E.03.02 Fundamental ignition experiments SNL Ekoto 420k 420 S.E.03.02 Fundamental ignition experiments SNL Ekoto 420k 420 LSPI Lab PI FY20 FY2 O.E.09.01 Fuel spray wall wetting and oil dilution impact ORNL Splitter 220k 220k A.E.04 X-Ray Studies of Fuel Injection and Sprays ANL Powell 490k 441 O.E.04.01 Injector Characteriz	L.M.01.02 N	Andels for improved prediction of PAH/soot	LLNL	Kukkadapu	200k	200k
LabPIFY20FY2A.M.03Advanced Ignition Modeling ToolsANLScarcelli400k370N.M.03ML based LES ignition modelNRELYellapantula275k275S.M.03.01DNS of early ignition kernel developmentSNLChen100k100S.M.03.02Physics based flame-kernel LES modelingSNLNguyen100k100A.E.03Fundamental Ignition ExperimentsANLRockstroh380k343S.E.03.01Advanced Ignition to Enable Alternative Combustion ModesSNLEkoto420k420S.E.03.02Fundamental ignition experimentsSNLEkoto420k420C.E.09.01Fuel spray wall wetting and oil dilution impactORNLSplitter220k220SpraysA.E.04X-Ray Studies of Fuel Injection and SpraysANLPowell490k4410.E.04.01Injector Characterization & DistributionORNLWissink125S.E.04Spray ExperimentsSNLPickett380k380S.E.04.03GDI sprays leadership & data sharingSNLPickett140k400A.M.04Towards Predictive Simulations of Sprays in EnginesANLTorelli300k220A.M.04.01Growing free spray and spray-wall interaction modelingANLTorelli300k220A.M.04.01Growing free spray and spray-wall interaction modelingANLTorelli300k220	Ignitio	n				
A.M.03Advanced Ignition Modeling ToolsANLScarcelli400k370N.M.03ML based LES ignition modelNRELYellapantula275k275S.M.03.01DNS of early ignition kernel developmentSNLChen100k100S.M.03.02Physics based flame-kernel LES modelingSNLNguyen100k100A.E.03Fundamental Ignition ExperimentsANLRockstroh380k342S.E.03.01Advanced Ignition to Enable Alternative Combustion ModesSNLEkoto420k420S.E.03.02Fundamental ignition experimentsSNLEkoto420k420C.E.09.01Fuel spray wall wetting and oil dilution impactORNLSplitter220k220C.E.04X-Ray Studies of Fuel Injection and SpraysANLPowell490k441O.E.04.01Injector Characterization & DistributionORNLWissink125S.E.04Spray ExperimentsSNLPickett380k36S.E.04.03GDI sprays leadership & data sharingSNLPickett140k140A.M.04Towards Predictive Simulations of Sprays in EnginesANLTorelli300k220A.M.04Improved free spray and spray-wall interaction modelingANLTorelli300k220	Ignitio		Lab	PI	FY20	FY21
N.M.03ML based LES ignition modelNRELYellapantula275k275S.M.03.01DNS of early ignition kernel developmentSNLChen100k100S.M.03.02Physics based flame-kernel LES modelingSNLNguyen100k100A.E.03Fundamental Ignition ExperimentsANLRockstroh380k342S.E.03.01Advanced Ignition to Enable Alternative Combustion ModesSNLEkoto420k420S.E.03.02Fundamental ignition experimentsSNLEkoto420k420LSPILabPIFY20FY2O.E.09.01Fuel spray wall wetting and oil dilution impactORNLSplitter220k220SpraysLabPIFY20FY2A.E.04X-Ray Studies of Fuel Injection and SpraysANLPowell490k441O.E.04.01Injector Characterization & DistributionORNLWissink125S.E.04Spray ExperimentsSNLPickett380k380S.E.04.03GDI sprays leadership & data sharingSNLPickett140k140A.M.04Tomrds Predictive Simulations of Sprays in EnginesANLTorelli300k220kA.M.04.01Improved free spray and spray-wall interaction modelingANLTorelli200k	A.M.03	Advanced Ignition Modeling Tools	ANL	Scarcelli	400k	370k
S.M.03.01DNS of early ignition kernel developmentSNLChen100k100kS.M.03.02Physics based flame-kernel LES modelingSNLNguyen100k100kA.E.03Fundamental Ignition ExperimentsANLRockstroh380k342S.E.03.01Advanced Ignition to Enable Alternative Combustion ModesSNLEkoto420k420kS.E.03.02Fundamental ignition experimentsSNLEkoto420k420kLSPILabPIFY20FY2O.E.09.01Fuel spray wall wetting and oil dilution impactORNLSplitter220k220kSpraysLabPIFY20FY2FY2A.E.04X-Ray Studies of Fuel Injection and SpraysANLPowell490k441O.E.04.01Injector Characterization & DistributionORNLWissink125S.E.04Spray ExperimentsSNLPickett380k380S.E.04.03GDI sprays leadership & data sharingSNLPickett140k140A.M.04Towards Predictive Simulations of Sprays in EnginesANLTorelli300k220A.M.04.01Improved free spray and spray-wall interaction modelingANLTorelli300k220A.M.04.01Improved free spray and spray-wall end end end endANLTorelli300k220	N.M.03	ML based LES ignition model	NREL	Yellapantula	275k	275k
S.M.03.02Physics based flame-kernel LES modelingSNLNguyen100k100A.E.03Fundamental Ignition ExperimentsANLRockstroh380k342S.E.03.01Advanced Ignition to Enable Alternative Combustion ModesSNLEkoto420k420S.E.03.02Fundamental ignition experimentsSNLEkoto420k420LSPILabPIFY20FY2O.E.09.01Fuel spray wall wetting and oil dilution impactORNLSplitter220k220SpraysLabPIFY20FY2A.E.04X-Ray Studies of Fuel Injection and SpraysANLPowell490k441O.E.04.01Injector Characterization & DistributionORNLWissink125S.E.04Spray ExperimentsSNLPickett380k380S.E.04.03GDI sprays leadership & data sharingSNLPickett140k140A.M.04Towards Predictive Simulations of Sprays in EnginesANLTorelli300k220A.M.04.01Improved free spray and spray-wall interaction modelingANLCorrelinetore200k	S.M.03.01	DNS of early ignition kernel development	SNL	Chen	100k	100k
A.E.03Fundamental Ignition ExperimentsANLRockstroh380k342S.E.03.01Advanced Ignition to Enable Alternative Combustion ModesSNLEkoto420k420kS.E.03.02Fundamental ignition experimentsSNLEkoto420k420kLSPILabPIFY20FY20O.E.09.01Fuel spray wall wetting and oil dilution impactORNLSplitter220k220kSpraysA.E.04X-Ray Studies of Fuel Injection and SpraysANLPowell490k441O.E.04.01Injector Characterization & DistributionORNLWissink125S.E.04Spray ExperimentsSNLPickett380k380cS.E.04.03GDI sprays leadership & data sharingSNLPickett140k140cA.M.04Towards Predictive Simulations of Sprays in EnginesANLTorelli300k220A.M.04.01Improved free spray and spray-wall interaction modelingANLTorelli200k	S.M.03.02	Physics based flame-kernel LES modeling	SNL	Nguyen	100k	100k
S.E.03.01 Advanced Ignition to Enable Alternative Combustion Modes SNL Ekoto 420k 420k 420k 5.E.03.02 Fundamental ignition experiments SNL Ekoto 420k 420k 420k 420k 420k 420k 420k 420k	A.E.03	Fundamental Ignition Experiments	ANL	Rockstroh	380k	342k
S.E.03.02 Fundamental ignition experiments SNL Ekoto 420k 420k LSPI Lab PI FY20 FY20 O.E.09.01 Fuel spray wall wetting and oil dilution impact ORNL Splitter 220k 220k Sprays Lab PI FY20 FY20 FY20 A.E.04 X-Ray Studies of Fuel Injection and Sprays ANL Powell 490k 441 O.E.04.01 Injector Characterization & Distribution ORNL Wissink 125 S.E.04 Spray Experiments SNL Pickett 380k 380 S.E.04.03 GDI sprays leadership & data sharing SNL Pickett 140k 140 A.M.04 Towards Predictive Simulations of Sprays in Engines ANL Torelli 300k 220 A.M.04.01 Improved free spray and spray-wall interaction modeling ANL Torelli 125	S.E.03.01	Advanced Ignition to Enable Alternative Combustion Modes	SNL	Ekoto	420k	420k
LSPILabPIFY20FY2O.E.09.01 Fuel spray wall wetting and oil dilution impactORNLSplitter220k220kSpraysLabPIFY20FY2A.E.04X-Ray Studies of Fuel Injection and SpraysANLPowell490k441O.E.04.01Injector Characterization & DistributionORNLWissink125S.E.04Spray ExperimentsSNLPickett380k380S.E.04.03GDI sprays leadership & data sharingSNLPickett140k140kA.M.04Towards Predictive Simulations of Sprays in EnginesANLTorelli300k220A.M.04.01Improved free spray and spray-wall interaction modelingANLTorelli300k220A.M.04.01Goring the spray and spray-wall interaction modelingANLTorelli300k220	S.E.03.02	Fundamental ignition experiments	SNL	Ekoto	420k	420k
LabPIFY20FY20FY20O.E.09.01 Fuel spray wall wetting and oil dilution impactORNLSplitter220k220kSpraysLabPIFY20FY20A.E.04X-Ray Studies of Fuel Injection and SpraysANLPowell490k441O.E.04.01Injector Characterization & DistributionORNLWissink125S.E.04Spray ExperimentsSNLPickett380k380S.E.04.03GDI sprays leadership & data sharingSNLPickett140k140kA.M.04Towards Predictive Simulations of Sprays in EnginesANLTorelli300k220A.M.04.01Improved free spray and spray-wall interaction modelingANLTorelli300k220A.M.04.01OL ALO 401GarriagtanaSNLTorelli200k200k	LSPI					
O.E.09.01 Fuel spray wall wetting and oil dilution impact ORNL Splitter 220k 220k Sprays Lab PI FY20 FY2 A.E.04 X-Ray Studies of Fuel Injection and Sprays ANL Powell 490k 441 O.E.04.01 Injector Characterization & Distribution ORNL Wissink 125 S.E.04 Spray Experiments SNL Pickett 380k 380 S.E.04.03 GDI sprays leadership & data sharing SNL Pickett 140k 140 A.M.04 Towards Predictive Simulations of Sprays in Engines ANL Torelli 300k 220 A.M.04.01 Improved free spray and spray-wall interaction modeling ANL Torelli 200k			Lab	PI	FY20	FY21
SpraysLabPIFY20FY20A.E.04X-Ray Studies of Fuel Injection and SpraysANLPowell490k441O.E.04.01Injector Characterization & DistributionORNLWissink125S.E.04Spray ExperimentsSNLPickett380k380S.E.04.03GDI sprays leadership & data sharingSNLPickett140k140kA.M.04Towards Predictive Simulations of Sprays in EnginesANLTorelli300k220A.M.04.01Improved free spray and spray-wall interaction modelingANLTorelli200h	0.E.09.01 Fi	iel spray wall wetting and oil dilution impact	ORNL	Splitter	220k	220k
A.E.04X-Ray Studies of Fuel Injection and SpraysANLPowell490k441O.E.04.01Injector Characterization & DistributionORNLWissink125S.E.04Spray ExperimentsSNLPickett380k380S.E.04.03GDI sprays leadership & data sharingSNLPickett140k140kA.M.04Towards Predictive Simulations of Sprays in EnginesANLTorelli300k220A.M.04.01Improved free spray and spray-wall interaction modelingANLTorelli200h	Sprays		1 - 1-		51/20	51/24
A.E.04A.R.104Powell490k441O.E.04.01Injector Characterization & DistributionORNLWissink125S.E.04Spray ExperimentsSNLPickett380k380S.E.04.03GDI sprays leadership & data sharingSNLPickett140k140kA.M.04Towards Predictive Simulations of Sprays in EnginesANLTorelli300k220A.M.04.01Improved free spray and spray-wall interaction modelingANLTorelli125A.M.04.01Corrigination200k	A E 04	X-Ray Studies of Fuel Injection and Sprays		PI	1006	
S.E.04Spray ExperimentsSNLPickett380k380S.E.04.03GDI sprays leadership & data sharingSNLPickett140k140kA.M.04Towards Predictive Simulations of Sprays in EnginesANLTorelli300k220A.M.04.01Improved free spray and spray-wall interaction modelingANLTorelli125	A.L.04	Injector Characterization & Distribution		Wissink	450K	1254
S.E.04Spray ExperimentsSNLPickettSockSockS.E.04.03GDI sprays leadership & data sharingSNLPickett140k140kA.M.04Towards Predictive Simulations of Sprays in EnginesANLTorelli300k220A.M.04.01Improved free spray and spray-wall interaction modelingANLTorelli125A.M.04.01Corrigington200k200k	S F 0/	Snrav Evneriments	SNI	Pickott	3804	3804
A.M.04 Towards Predictive Simulations of Sprays in Engines ANL Torelli 300k 220 A.M.04.01 Improved free spray and spray-wall interaction modeling ANL Torelli 125	S E 04 02	GDI sprays leadership & data sharing	SNI	Dickett	140k	1/04
A.M.04.01 Improved free spray and spray-wall interaction modeling ANL Torelli 125	Δ Μ 04	Towards Predictive Simulations of Sprays in Engines		Torelli	3004	2204
A M 0.01 Circle and a spray and spray want include in bucking Are 101em 122	Δ M 04 01	Improved free spray and spray-wall interaction modeling		Torelli	JUUK	125k
LA MULA ULE SIMULATE TREE SPRAVS IN CHAMPER AND ENGINES I ANULE L'ATTINGTON ZUCK		Simulate free sprays in chamber and engines		Carrington	200k	1234
S M 04 01 Free spray modeling S0k 50	S M 04 01	Free spray modeling	SNI	Nguyen	50k	50k
S M 04 02 Free spray modeling addition SNI Tagliente 125	S M 04 02	Free spray modeling addition	SNI	Tagliente	JUK	125k

Response to last year's reviewer comments (wt. avg. = 3.35/4)

• Q3 Reviewer 4: "With regards to cold-start emissions, the reviewer would have liked to see more information on how PACE will collaborate with aftertreatment research teams"

The PACE leadership and the CLEERS (Crosscut Lean Exhaust Emissions Reduction Simulations) leadership have started this year coordinating with the OEM members of the USDRIVE ACEC Tech Team. The goals are to define the simulation outputs needed from PACE and the the aftertreatment model in order to predict tailpipe emission.

• Q4 Reviewer 3: "... the major outcomes are not overly specific as to what final success looks like... More clarity is necessary to define a quantifiable result state, which could be considered a success"

All the major outcomes have a success measure that can be computed and validated against engine experiments. The success measures for Major Outcomes 1, 4, 5, and 8 are based on a priori prediction accuracy of an engine design change (geometry or operating conditions). Major Outcomes 2, 3, and 6, have success measures based on the experimental demonstration of a specific aspect of engine performance. In all cases, the quantifiable level to declare success is based on detailed feedback from the ACEC Tech Team each year.

Response to last year's reviewer comments (wt. avg. = 3.35/4)

• **Q4 Reviewer 4:** "The use of artificial intelligence (AI) and machine learning (ML) should be handled carefully... Machine learning should be used to handle turnaround time."

The ML based models developed at NREL have been designed to complement the physics-based models. The starting point for all the ML based models are state-of-the-art (SOA) physics-based models and are designed to reproduce the asymptotic behavior of physics-based models. We also tightly couple various physics-based realizability conditions during the ML model development process. In terms of testing to establish confidence in these ML based models, the team at NREL has been performing blind validation tests against the DNS data and in FY21-FY22 we plan to perform a-posteriori tests against experimental data. Additionally, these ML based models are also designed to efficiently utilize higher computing power afforded by the latest supercomputing technologies.

• Q4 Reviewer 5: "the reviewer still would have liked to see some additional information on the codes that will be used for the direct numerical simulations (DNS). Why are these codes needed if the ultimate goal is to get the models in commercial codes used by the OEMs?"

There are two ASCR-funded codes in the Exascale Computing Project that are used in the PACE program - NEK5000 and Pele. NEK5000 is needed to provide the highest fidelity turbulence resolution of all the in-cylinder flow processes (both non-reacting and reacting) using high-order, large eddy simulation (LES). The availability of such resolution allows the CFD integration tasks for Major Outcome 1 (high load knock) and Major Outcome 5 (dilute cyclic variability) to establish the best performance available on the success measures, and to isolate numerical errors in the flow-field coupling versus the standalone sub-models for other physical processes. Pele is capable of performing direct numerical simulation (DNS) of reacting flows but cannot simulate the entire cylinder during the full reacting cycle even with a complete takeover of the DOE's largest supercomputer. As such, it will be used as a microscope to investigate fundamental turbulent-combustion processes not currently resolved in engineering models with the aim of developing better sub-models for early flame kernel development, end-gas auto-ignition, and flame-wall interactions.

Abbreviations

ACEC	Advanced Combustion & Emissions Control	GE	General Electric
AEC MOU	Advanced Engine Combustion Memorandum of	HPC	High Performance Computing
	Understanding	ICE	Internal Combustion Engine
AI	Artificial Intelligence	KLSA	Knock Limited Spark Advance
AMR	Annual Merit Review	LLNL	Lawrence Livermore National Laboratory
ANL	Argonne National Laboratory	LSPI	Low Speed Pre-Ignition
APS	Advanced Photon Source	ML	Machine Learning
ASCR	Advanced Scientific Computing Research	MO	Major Outcome
AVL	Anstalt für Verbrennungskraftmaschinen List GmbH	NREL	National Renewable Energy Laboratory
BOB	Blendstock for Oxygenate Blending	OEM	Original Equipment Manufacturer
CA/CAD	Crank Angle in Degrees	ORNL	Oak Ridge National Laboratory
CFD	Computational Fluid Dynamics	PACE	Partnership for Advanced Combustion Engine
COV	Coefficient Of Variation	PI	Principal Investigator
CPU	Computer Processing Unit	RCM	Rapid Compression Machine
DOE	Department of Energy	SNL	Sandia National Laboratories
EGR	Exhaust Gas Recirculation	SNS	Spallation Neutron Source
EIA	U.S. Energy Information Administration	UDF	User Defined Function
EPA	Environmental Protection Agency	VOF	Volume of Fluid
FY	Fiscal Year	VTO	Vehicle Technologies Office

