Improving Transportation Efficiency Through Integrated Vehicle, Engine, and Powertrain Research - SuperTruck 2

Darek Villeneuve, Principal Investigator, Vehicle
Jeff Girbach, Principle Investigator, Powertrain
Steve Musselman, Detroit Powertrain, Presenter
June 24, 2021

Daimler Trucks North America
Project ID: ACE100

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline

Start
January 1, 2017

End
December 31, 2021

June 2021 Status= 85% Complete

Technical Targets

• Greater than 115% improvement in vehicle freight efficiency (on a ton-mile-per-gallon basis) relative to a 2009 baseline.
• Greater than or equal to 55% engine brake thermal efficiency demonstrated at 65 mph on a dynamometer.
• Develop technologies that are cost effective

Project Total $40Mil

Budget

2020 Summary

DOE Share $20,000,000
Michelin $1,000,000
ORNL $500,000
NREL $203,254
Detroit Share $12,468,918
DTNA Share $5,827,829

Project Partners

• Schneider National
• Strick Trailers
• Michelin
• Oak Ridge National Laboratory
• National Renewable Energy Laboratory
• University of Michigan
• Clemson University
Reduced fuel consumption plan in HD long haul

Phase 1
- Simulation
- Goal Setting
- Main Path & Stretch Path Defined

Phase 2
- Main Path Design
- A-Sample Design Release
- Bench Testing

Phase 3
- A-Sample Build & Test
- 40%/100% Clay
- Content Selection
- Final Demo Design

Phase 4
- Finish Final Demo Design & Build
- Optimization

Phase 5
- Final Demo Optimization
- FE Validation Test
- Final Report

Relevance and Objectives

Phase Milestone Status Completion Date

<table>
<thead>
<tr>
<th>Phase 4</th>
<th>Final Demonstrator Design Released</th>
<th>100%</th>
<th>Oct 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Final Demonstrator Assembled</td>
<td>30%</td>
<td>June 2021</td>
</tr>
<tr>
<td>Phase 5</td>
<td>Final Demonstrator FE Validation Test Complete</td>
<td>5%</td>
<td>Q4 2021</td>
</tr>
<tr>
<td></td>
<td>Final ST2 Engine Bench Testing Complete</td>
<td>15%</td>
<td>Q3 2021</td>
</tr>
<tr>
<td></td>
<td>Final ST2 Report Complete</td>
<td>5%</td>
<td>Q1 2022</td>
</tr>
</tbody>
</table>
Approach – SuperTruck 2 Roadmap

Baseline Vehicle: 2009 Cascadia/DD15

ST2 125% Stretch Target @ 65k GVW

ST2 115% Freight Efficient Target @ 65k GVW

Freight Efficiency % (ton-miles/gal)

Baseline to 2017 NGC 61%

On road (Portland-Pendleton-Portland) validation @65k lbs

Focus on high potential workstreams

Assumes 2,800 lbs mass reduction
Technical Progress - Exterior Development

Final Demonstrator

- Exterior parts received with exceptional fit to vehicle
- Active Tractor Trailer Gap (TTG) feature completed
- Aerodynamic testing confirmed performance in wind tunnel and on the track

Trailer Build Complete

- Standard 53’ trailer build completed with 5 enhancements
- Mass savings of ~2,000 lbs over typical trailer
- Controls for ride height and boat tail configured

Images:
- Stowed Position
- Fully deployed
- Completed trailer build & test

Execution on track
Technical Progress – Chassis Developments

Michelin Prototype Tires

- Michelin completed tire build with testing
- Optimized for Adaptive Tandem and TCO

![Adaptive Tandem](image)

Operates like a 6x2 at Hwy Speeds

Performance improvement over 2017 NGC:
1. Steer Tire: 16% Crr reduction
2. Drive Tire: 8% Crr reduction + 30% wear improvement
3. Tag/Trailer Tire: 26% Crr reduction

Dynamic Load Shift (DLS)

- Shifts load to take advantage of extremely low Crr tag tires
 - Traction Mode: More load on drive axle at low speeds
 - Equal Mode: Equal load on drive and tag axles
 - Eco Mode: More load on tag axle at highway speeds
- Axle load determined by suspension pressure.

![Dynamic Load Shift Chart](image)

Chassis performance optimized and confirmed
Final Demonstrator solution:
- NREL support to optimize 7kWh LTO battery with off the shelf components
- Developed cell electrothermal model based on tests at Thermal Testing Facility
- Simulation selected package arrangement and reduced order model for cooling control
- Cells remain below manufacturer imposed temperature limit

30 kW BRM in P2.5 position with 3.5:1 transfer case

P2 location enables improved power

Hybrid Strategy with predictive cruise
- Recuperate during negative torque events
- Long haul route minimizes recouped energy
- Finalizing balance to store or use energy

Architecture enabled for energy optimization
A-Sample Integration Results

A-Sample Component Style Testing

- Several weeks of testing reviewing integration performance
- One drive route is Portland-Pendleton-Portland (PPP)
- Route is ~7 hours (~25,000 seconds) round trip
- Significant data being captured
- Results
 - Adaptive tandem ~95% in 6x2 mode
 - Split cooling and trans temp performed well
 - DLS & height control needed further development
 - 48V accessories are stable
 - Hybrid enabled during engine braking

Results driving Final Demonstrator development

Powertrain/Chassis
- 13 Speed Transmission
- Adaptive Tandem Axle
- Clutched Air Compressor
- Dynamic Load Shift & AHC
- Integrated vehicle controls

Split Cooling
- Low Temperature Circuit
- Transmission oil heating and cooling

Energy Management
- 48V Integration
- 48V P0 Mild Hybrid
- 48V eHPS (Steering Pump)
- 48V eAC
- DC-DC converter to 12V
- LFP Batteries
SuperTruck 2 Powertrain

Jeff Girbach, Principle Investigator, Powertrain
Steve Musselman, Detroit Powertrain, Presenter
June 24, 2021

Daimler Trucks North America

Project ID: ACS100
ST2 Engine Overview

Downspeeding
- Two stage turbocharging
- Interstage cooling

Faster combustion enablers
- High compression ratio
- Higher peak cylinder pressure
- Redesigned bowl shape

Air System
- Miller cycle valve timing
- Late exhaust valve opening
- Two stage EGR cooling
- Long loop EGR

Friction & Parasitics
- Liner surface conditioning
- Coated piston rings & pin
- Oil flow reduction (crankshaft)
- Closed-loop oil pressure control
- Active piston cooling jets
- Low viscosity oil / higher oil temperature

Heat Loss Reduction
- Thermal Barrier Coatings on piston and cylinder head.
- Insulated exhaust manifolds

Waste Heat Recovery
- Phase Change Cooling WHR

Aftertreatment
- Close-coupled SCR

Fluid Temperature Management
- Split Cooling System
Thermal Efficiency Demonstration – 55% BTE Engine System Tested at ORNL

Engine ready for testing at ORNL

PCJ Split Lube System (e.g. 48V pump)

High-Pressure Turbo Stage with two waste-gates

Set of Pistons with Thermal Barrier Coatings

‘Twin-Feed Crankshaft’ for reduced oil flow

Insulated exhaust manifold

Updated Timeline

Q1 Q2 2021 Q3 Q4

Updated Timeline

(significant delays in 2020 due to COVID-19 pandemic)

- All parts available
- Built complete
- Rationality Check at Detroit Lab
- Start of Testing at ORNL
- Final Run/Demonstration
- Reporting & Documentation

Downspeeding enablers
- Two stage turbocharging
- Interstage cooling

Faster combustion enablers
- High compression ratio
- Higher peak cylinder pressure
- Redesigned bowl shape

Air System
- Miller cycle valve timing
- Late exhaust valve opening
- Two stage EGR cooling

Friction & Parasitics
- Liner surface conditioning
- Coated piston rings & pin
- Oil flow reduction (crankshaft)
- Closed-loop oil pressure control
- Active piston cooling jets
- Low viscosity oil / higher oil temperature

Heat Loss Reduction
- Thermal Barrier Coatings on piston, cylinder head in process.
- Insulated exhaust manifolds

Waste Heat Recovery
- Phase Change Cooling System placed on hold, testing to be finished with EGR & Exhaust WHR.

Afttreatment
- Close-coupled SCR

Fluid Temperature Management
- Split Cooling System
Thermal Barrier Coating Development - Simulation Loop and Engine Validation

Coupled CFD and FEA simulation to predict piston surface temperature (baseline vs. coated)

- **1-D Cycle Simulation (GT POWER)** – Combustion chamber heat transfer
 - Total heat transfer reduced by 10% compared to baseline metal
 - Single-cylinder engine showed potential of 0.8% BSFC improvement
 - Multi-cylinder testing in the final 55% BTE demonstration engine at ORNL

- **Single-Cylinder Engine**
 - CFD (ORNL) & FEA (Clemson) models used to evaluate several TBC formulations
 - ‘Gen 3’ coating was downselected for best thermal swing and thermal stability.
 - Up to 1% BSFC improvement based on CFD and 1-D cycle simulation
 - Single-cylinder experimental test showed 0.8% BSFC potential (reference load)
 - 100 hour durability test successfully completed on single-cylinder engine

Thermal Barrier Coating – ≤ 500 K difference spatially (same increment of time)
Split Lubrication System

- Downsized main oil pump/system and supplemental oil circuit for piston cooling jet supply
- Fixture testing validated flow targeting at piston cooling gallery.
- Flow Rate Testing confirmed maximum flow rate capability and nozzle-to-nozzle flow variation within acceptable level
- Simulated potential for 0.5% BSFC Improvement, will be confirmed on 55% BTE Engine
Final Demonstrator Vehicle Engine and Transmission

- DD13 engine
- Two stage turbocharging
- Late Miller timing camshaft
- Late exhaust valve opening camshaft
- High BMEP potential for down-sped PT configuration
- Low temperature (LT) cooling circuit
 - Efficient Interstage cooling
 - Split EGR cooler (HT/LT)
- Significant BSFC improvement over best available engine, especially at lower engine speeds
<table>
<thead>
<tr>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little or no discussion of trailer and trailer partner efforts in the project yet significant savings identified in the FE plan. No discussion of trailer tire Crr improvement.</td>
<td>With limited time and presentation slides available, not all work is highlighted during the AMR. Strick Trailers has been an integral part of SuperTruck 2 development. Strick has produced a 53’ trailer that is about 2,000 lbs. lighter than typical with innovative aero components that could be adapted to the approximately 2 million trailers found on the road today.</td>
</tr>
<tr>
<td>Friction hardware shows significant improvements in BSFC over stock hardware implies it will be a big part of the final demonstrator package, but the data shown is a combined effect of these coatings, along with lower viscosity oil, so a lower pumping loss. With no numbers on the graph, I have doubts that the benefit will be worth the cost and risk involved with these coating (long term durability and effect on oil consumption).</td>
<td>Referring to friction & parasitics slides from the 2020 AMR, we demonstrated approximately 0.5% fuel consumption reduction for the friction reduction package in the stand-alone test of the friction package. A 0.5% fuel consumption reduction is significant for a friction package and would be worth consideration on a business case basis.</td>
</tr>
<tr>
<td>Optimizing tire Crr differently between tag and pusher tires did not consider TCO ramifications to fleet operations and replacement rates, retreading, etc.</td>
<td>TCO was considered throughout tire development. The tag tire can also be used on the trailer axle since it is not a tag specific tire. As a consequence, the fleets will not have additional inventory for replacement (Tractor + Trailer still has to deal with three tire types: steer, drive, tag/trailer). The tag tire can be retreaded with the appropriate tread on either the drive/tag/trailer axles.</td>
</tr>
</tbody>
</table>
Collaboration and Coordination

- Schneider National
 - Project scoping
- Strick Trailers
 - Low mass trailer with production available aerodynamic features
- Michelin
 - Low rolling resistant tires balanced with fleet TCO
- Solution Spray Technologies
 - TBC coating development
- Oak Ridge National Laboratory
 - Engine friction and parasitics, testing
- National Renewable Energy Laboratory
 - Thermal development, management and testing
- University of Michigan
 - Model based controls and testing
- Clemson University
 - Engine TBC analysis and development
Remaining Challenges

Technical

- Integration of new engine into Final Demonstrator
- Evaluation and optimization of hybrid during multiple drive cycles.
- Integration of new smaller 48v battery system.

Resources

- Starting late in March 2020, supply chain disruptions and work arrangements changed delaying critical part delivery such as the engine about 8 months. Recovery plans are in place, but have risk to finish all testing before end of 2021.

Any proposed future work is subject to change based on funding levels

Plans in place to address challenges
Summary and Future Work

Phase 5 Activities
- Hybrid optimization
- ST2 engine integration into Final Demonstrator
- Fuel Economy testing
- 55% BTE Engine Testing
- Final Report Writing

Any proposed future work is subject to change based on funding levels
Summary

Accomplishments

A-Sample Integration Vehicle
- Completed several weeks of testing in Fall 2020
- Continued through 2021 to integrate most new features

Engine Development
- 55% engine completed build and shipped to ORNL for final testing
- Final demonstrator engine completed dynamometer calibration

Final Demonstrator donor vehicle received April 2020
- Chassis torn down and rebuilt awaiting engine expected in May 2021
 - Michelin built and tested tires exceeding original Crr reduction goals
- Completed exterior build including trailer with testing
- Testing and simulation show good path towards >115% freight efficiency
- Coronavirus caused supply chain disruptions
 - Have aggressive plan to complete testing in 2021 with increasing risk
Questions?