

Institute for INTEGRATED CATALYSIS

PGM Reduction in Three-Way Catalysts (TWCs)

<u>Konstantin Khivantsev</u>, Jinshu Tian, Libor Kovarik, Ken Rappe, Janos Szanyi, Yong Wang

Pacific Northwest National Laboratory

June 23, 2021

ACE056

BATTELLE

PNNL is operated by Battelle for the U.S. Department of Energy

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Szanyi) (Janos **ACE118** (Ken Rappe) FOA **ACE159**

Pacific
NorthwestThis TWC Project Specifically Addresses the "150°C Challenge"Pacific
NorthwestPGM Reduction Through Control of Metal-Support Interactions

• THE 150° CHALLENGE 1 **FOM REDUCTION**

ACE056 (Konstantin Khivantsev)

Proudly Operated by Battelle Since 1965

- Increasing the efficiency of internal combustion engines
 - dramatically **improves the fuel economy** of the nation's fleet of vehicles
 - **reduces** our **dependence on foreign oil and reducing carbon emissions**.
- The overarching **emissions goal** is the U.S. EPA Tier 3 Bin 30 emission standard.
- Aftertreatment technologies are required to be integrated with the engine combustion approaches.
- Achieve greater than 90% conversion of criteria pollutants (NO_x, CO, HCs) at 150°C for the full useful life of the vehicle (defined as the longer of 150,000 miles or 15 years).
- Require the research and development of new and novel material combinations that will enable lower temperature catalytic performance, increased selectivity to inert species, and optimal storage of pollutant and reductant species.

Advanced Combustion and Emission Control Roadmap March 2018

Overview

Proudly Operated by Battelle Since 1965

Timeline

Status: On-going core R&D

■ **Budget**FY2021 funding – \$ 331 K

Barriers and Technical Targets

- Emission controls contribute to durability, cost and fuel penalties
 - Decreasing PGM content
 - Increasing durability/stability
 - Low-temperature performance
- Improvement limited by:
 - Fundamental understanding of structure-activity relationships
 - Understanding of degradation mode
 - Development of model tools
- Effective dissemination of information

Partners

Stellantis (USA), University of Sofia (Bulgaria): guidelines in catalyst evaluations; synergies in model materials

Milestones

Proudly Operated by Battelle Since 1965

Milestones:

Complete initial studies of TWCs for stoichiometric 3/30/2021 complete combustion engines

Evaluate the impact of single-atom density on TWC 6/30/2021 on track performance

Approach

Proudly Operated by Battelle Since 1965

Paradigm shift in TWC NO reduction chemistry

- Previous TWCs studies considered metallic surfaces but not the interface between single metal atoms and the support
- High-temperature atom trapping strategy to synthesize thermally stable single noble metal atoms on supports for NO reduction
- This requires special characterization tools
 - Institute for Integrated Catalysis (IIC)
 - Environmental Molecular Sciences Laboratory (EMSL)
- Work closely with our partners and sponsors
 - Stellantis (USA) (e.g., guidelines for TWC evaluation)
 - U. Sofia (Bulgaria) (collaboration with DFT modeling)

 $-N + -CO \rightarrow NCO$ $-NCO + H_2O \rightarrow NH_3 + CO_2$ $-N + NO \rightarrow N_2O$ $-O + CO \rightarrow CO_2$ $-N + -N \rightarrow N_2$

Technical Accomplishments: thermally stable Rh atoms highly active for NO reduction

Proudly Operated by **Battelle** Since 1965

120 mg catalyst 0.5 wt% Rh/CeO₂. Total flow 300 ml/min. Concentrations: 460 ppm NO, 1750 ppm CO, ~2.6 % H₂O balanced with N₂. GHSV ~ 150 L/g*hr, ramp rate 2K/min

- 0.5 wt% Rh₁/Ceria is highly active for NO reduction by CO
- Full NO consumption achieved at ~115 °C

Technical Accomplishments: 0.1 wt% Rh₁/CeO₂: Full NO conversion at 125 °C

Proudly Operated by Battelle Since 1965

120 mg catalyst 0.1 wt% Rh/CeO₂. Total flow 300 ml/min. Concentrations: 460 ppm NO, 1750 ppm CO, ~2.6 % H2O balanced with N₂. GHSV ~ 150 L/g*hr, ramp rate 2K/min

- 0.1 wt% Rh₁/Ceria is highly active for NO reduction by CO
- Less N₂O is produced
- Full NO consumption achieved at ~125 °C: performance comparable to 0.5 wt% Rh sample

Technical Accomplishments: Rh₁/CeO₂:

Superior activity is due to Rh-O-Ce which is mechanistically similar to homogeneous organometallic Rh(I) catalysts

NO+ CO under dry conditions

T=175 °C, GHSV=450 L/g*hr. 460 ppm NO, 1,800 ppm CO balanced in nitrogen. The rate at 0 wt% loading was fixed at 0.

- Homogeneous Rh(I) and Ru(II) complexes catalyze NO reduction by CO with a mechanism distinct from metallic surfaces (and at lower temperatures)
- Reaction rates scale linearly with [Rh(I)] concentration;
 CO and NO orders in the kinetic regime are ~0

CO and NO orders observed for dry (CO+NO) reaction on 0.1 wt% Rh/CeO₂ at 120 °C and GHSV ~ 450 L/g*hr. At constant NO level (460 ppm) CO levels were varied: ~1,800, 2,700, 3,600 and 6,000 ppm). At constant CO level ~6,000 ppm NO levels were varied: ~ 220, 460 and 1,000 ppm.

Sample	NO order	CO order		
0.1 wt% Rh/CeO ₂	0	0		

 Similar kinetics for heterogeneous single-atom systems suggest mechanisms analogous to homogeneous complexes

Technical Accomplishments: 0.1 wt% Rh *vs*. 0.5 wt% Rh/CeO₂ similar catalytic activity assessed with infra-red spectroscopy

Proudly Operated by Battelle Since 1965

- 0.1 wt% Rh_1 /Ceria is more uniform then 0.5 wt%: Rh(I) cations are less electropositive
- More electropositive Rh(I) cations are suggested to be less active
- NO oxidizes Rh(I) to Rh(III), with intermediacy of hyponitrite species, similarly to homogeneous Rh(I) complexes

Technical Accomplishments: NH₃ formation is governed by p(CO)/p(NO) parameter

Time, minutes

120 mg 0.1Rh/CeO₂. Total flow 300 ml/min. Concentrations: 460 ppm NO, 1750 ppm CO, ~2.6 % H2O balanced with N₂. GHSV ~ 150 L/g*hr, T=120 ° C

- P(CO)/P(NO) parameter controls ammonia production
- Propylene minimally affects NO conversion

120 mg 0.1Rh/CeO₂. T=120 °C and GHSV 450 L/g*hr (NO ~ 460 ppm, CO ~ 1,800 ppm, H₂O ~ 2.6 %, C₃H₆ levels of ~ 0, 360 and 1,100 ppm respectively).

Technical Accomplishments: Rh₁/(Ce/Zr)O₂:

900 °C hydrothermally aged 0.1 wt% Rh₁/(Ce/Zr)O₂ presents highly active and stable catalyst under stoichiometric conditions

120 mg 0.1 wt% Rh/(Ce/Zr)O₂. Total flow 300 ml/min. 460 ppm NO, 7,000 ppm CO, ~3,500 ppm O₂, ~2.6% H₂O, balanced with N₂. GHSV ~ 150 L/g*hr, ramp rate 2K/min. HTA900 was hydrothermally aged in the presence of reactants/steam at 900 °C for 4 hours.

- Mixed Ceria-Zirconia oxides have higher stability than ceria
- Supporting 0.1 wt% Rh produces active NO reduction catalyst even under stoichiometric conditions

Pacific Northwes

Proudly Oberated by Battelle Since 1965

The catalyst does not degrade after hydrothermal aging at 900 °C

Technical Accomplishments: M₁/CeO₂:

Pd₁ and Ru₁/CeO₂ catalysts with promising performance identified

Proudly Operated by Battelle Since 1965

120 mg catalyst. Total flow 300 ml/min. Concentrations: 460 ppm NO, 1750 ppm CO, ~2.6 % H2O balanced with N₂. GHSV ~ 150 L/g*hr, ramp rate 2K/min

- 0.1 wt% Pd and Ru highly active for NO reduction by CO
- Pd produces the lowest amounts of ammonia; Ru the highest amounts of ammonia
- 0.1 wt% Ru/ceria most active for CO abatement and water-gas-shift

Noble metal price (\$ per ounce)

<u>Platinum</u>	~\$1,200
Palladium	~\$2,935
Rhodium	~\$28,000
Ruthenium	~\$351
Iridium	~\$1498

Technical Accomplishments: overcoming Ru volatility by trapping Ru as single atoms in 0.1 and 0.5 wt% Ru

Proudly Operated by **Battelle** Since 1965

dispersion: HAADF-STEM useful in observing Ru atoms

- ▶ Full NO conversion ~135 °C; full CO conversion at 175 °C
- Ruthenium is >80 times cheaper than Rh
- Single Ru atoms are trapped by ceria

120 mg catalyst Total flow 300 ml/min. Concentrations: 460 ppm NO, 1750 ppm CO, ~2.6 % H2O balanced with N₂. GHSV ~ 150 L/g*hr, ramp rate 2K/min

Temperature, °C

Ru₁/CeO₂: DFT calculations clarify the precise location and oxidation state of Ru and Ru-NO complexes on ceria

Proudly Operated by **Battelle** Since 1965

a-10_NO	b-1	O_N(С			c-1C)_NC)	d-	10_N	0	e-10_NO
	RuO(NO)/Ce ₂₁ O ₄₂	E _{rel} ^a B	E ^b E _{vac}	N _s ^c	N _s (Ru) ^d	#(Ce ³⁺) ^e	q(Ru) ^h	Ru-O	Ru-N	Δ (N-O) ^f	v(N-O) ^g	
	a-10_NO	1.72 -3	.11	1	0.8	0	1	184;190	179	2.3	1763	
	c-10_NO	1.42 -2	.26	1	0.7	0	1	195;200;204	177	1.4	1824	
	b-10_NO	2.91 -1	.03	1	0.7	0	1	185;209;224	177	1.7	1799	
	d-10_NO	1.91 -1	.65	1	0.7	0	1	182;190	178	2.7	1733	
	e-10_NO	0.00 -3	.00	1	0	1	2	191;212;213; 213; 213	3 179	1.1	1840	
	e-10_N0_vac_b	2.08	3.32	1	0	3	2	192;212;212; 214; 215	5 178	1.2	1832	
	e-10_N0_vac_a	0.00	1.24	3	0.25	4	2	198;199;202; 204	173	2.4	1788	
	e-10_N0_vac_c	0.63	1.86	1	0	3	2	191;212;212; 212; 213	3 178	1.1	1837	

Ru(II) ions are located at (100) facets of ceria. Upon NO adsorption, NO donates an electron to Ce⁴⁺, thus NO⁺ ligand and a Ce³⁺ center are formed, while the formal charge of the Ru remains +2.

Modeling of realistic ~ 1nm ceria nanoparticles with different facets

Responses to 2020 Reviewers' Comments

Proudly Operated by Battelle Since 1965

Reviewers' Comments	PNNL Responses
It might be good to break up this project into several smaller projects where each is focused on one catalyst technology	TWC is presented separately in ACE056 (current presentation)
 Activities related to TWCs show interesting results of almost over 90% NO reduction for temperatures as low as 100°C. One question related to TWC research is how representative are these results for TWC used in natural gas vehicles? The reviewer commented that there is no mention of natural gas related TWC work and a decrease in NOx reduction with age. It would be interesting to involve Cummins for TWC related work since Cummins is a leading NGV engine manufacturer, input on issues related to TWC for NG applications is important as well 	Since NGVs are not widely used in the North American markets and they are not the current focus of OEMs, we have not studied these factors. If in the future the scope permits these studies, we intend to investigate them.
The Rh/Ce catalyst should be tested at stoichiometry and not the very rich conditions that were used (1,750 parts per million [ppm] CO, 460 ppm NO); this would probably reduce the NH3 formation on the test with H2O.	We initiated these studies for the promising Rh1/Ceria formulations (Slide 13).
needs to look at the effects of sulfur poisoning and thermal aging on the single atom Rh/Ce catalyst. Since this is being developed as a TWC, aging temperatures of 900° to 950°C need to be assessed while using the ACEC aging protocol (neutral/rich/lean aging). The OSC of the Rh/Ce catalyst needs to be assessed, because OSC is so important for TWCs. The light off tests need to be assessed with air to fuel ratio (A/F) dithering to simulate actual vehicle operation.	We intend to test sulfur tolerance of promising formulations. Single-atom materials may offer beneficial properties compared to nanoparticles supported on ceria (that are widely used in industrial formulations). Promising Rh1 samples supported on modified ceria show promising stability even after 900 °C aging. Dithering studies will be performed in collaboration with our OEM collaborators such as Stellantis on most stable/active catalysts.

Collaboration and Coordination with other Institutions

Proudly Operated by Battelle Since 1965

Collaborators/Coordination

- <u>U. of Sofia (Bulgaria)</u>: theoretical modeling by Hristiyan A. Aleksandrov and Georgi N. Vayssilov
- Stellantis (USA): provide guidance toward practicality of TWC work
- Ford (USA): discussions to understand OSC (oxygen storage capacity) of the materials

Remaining Challenges and Barriers

Proudly Operated by Battelle Since 1965

- Improvement of hydrothermal stability of TWC materials
- Clarification of deactivation modes; regeneration strategies for deactivated catalysts
- Sulfur tolerance of TWC formulations

Proudly Operated by Battelle Since 1965

- Investigate hydrothermal stability of promising TWC formulation
- Investigate sulfur tolerance and ways to re-activate sulfur-poisoned materials
- Understand the reasons behind TWC catalyst deactivation and ways to re-generate catalysts
- Develop theoretical models for Rh₁/ceria and evaluate the pathways for NO conversion with the aid of ab-initio quantum-mechanical calculations: this is of paramount importance for establishing predictive reactivity descriptors for a library of materials

Any proposed future work is subject to change based on funding levels

Summary

Proudly Operated by Battelle Since 1965

- Prepared highly active catalysts with maximized interface between metal atoms (ions) and the support using atom trapping
- Identified ability of single-atom doped materials to perform NO reduction
- Showed lower Rh loadings (0.1 wt%) have ~ similar activity as 5 times higher (0.5 wt%) Rh-loaded catalysts
- Used spectroscopy tools to understand the mechanism and intermediates of NO reduction by CO

Institute for INTEGRATED CATALYSIS

Acknowledgements

DOE EERE Vehicle Technologies Program: Gurpreet Singh Siddiq Khan Ken Howden

Thank you

Institute for INTEGRATED CATALYSIS

Technical Back-up Slides

Isolated Rh atoms on redox-inactive alumina shown active for NO reduction by CO

Proudly Operated by Battelle Since 1965

120 mg catalyst. Total flow 300 ml/min. Concentrations: 460 ppm NO, 1750 ppm CO, ~2.2% H2O, balanced with N₂. GHSV ~ 150 L/g*hr, ramp rate 2K/min

- ~0.1 wt% Rh₁/Alumina is active for NO reduction by CO
- Less active than ceria-supported samples
- Single Rh atoms are active sites on different supports

~0.1 wt% Rh/Alumina, HAADF-STEM images after 500 ° C reaction

Compare NO+ CO under wet and dry conditions; Evaluate long-term stability for 0.1 wt% Rh/CeO₂

120 mg catalyst 0.1Rh/CeO $_2$. Total flow 300 ml/min. Concentrations: 460 ppm NO, 1750 ppm CO, (~2.6 % H2O), balanced with N $_2$. GHSV ~ 150 L/g*hr, ramp rate 2K/min

- Water promotes reactivity
- Ammonia is formed in the presence of water
- Catalyst shows promising stability

0.1 wt% Rh/Ceria stable at 120 °C under wet conditions for ~ 7.3 days (NO level increases from ~10 ppm to 27 ppm; NH_3 level deceases from 275 to 250 ppm)

CO consumption is simultaneous with H_2O consumption during NH_3 formation: water-gas-shift reaction occurs!

Proudly Operated by **Battelle** Since 1965

120 mg catalyst 0.1Rh/CeO₂. Total flow 300 ml/min. Concentrations: 460 ppm NO, 1750 ppm CO, (~2.6 % H2O), balanced with N₂. GHSV ~ 150 L/g*hr, ramp rate 2K/min

Infra-red studies show reactivity of Rh₁/CeO₂ at sub-ambient temperatures: Rh1/Zeolite unreactive

27

Difference IR spectra during reaction of 0.5 wt% $Rh(I)(CO)_2/CeO_2$ with ~1 Torr NO at ~240 K (1.5 hours). Reaction occurs even at this low-temperature: $Rh(I)(CO)_2$ bands go down, simultaneously N_2O linearly coordinated to Rh center evolves. Hyponitrite bands evolve below 1,200 cm⁻¹

- Rh(I)(NO)₂ observed
- Highly electropositive Rh(I) on zeolite unreactive
- Less electropositive Rh(I) on ceria more active
- Reaction occurs even at sub-ambient temperatures at a very low rate

0.5 wt% $Rh(CO)_2/H$ -FAU zeolite: $Rh(NO)_2$ formation: unreactive for NO reduction with CO

Trapping intermediates (Rh hydride) with IR provides a pathway to modeling the system

Proudly Operated by Battelle Since 1965

Red spectrum: 0.5 wt% Rh(CO)₂/CeO2 after interaction with ~ 50 Torr H₂ at 120 °C. Plue appartum: After expectre of Ph(CO)H /Caria to 50 Torr D

Blue spectrum: After exposure of $Rh(CO)H_2/Ceria$ to 50 Torr D_2 .