

NO_x Control & Measurement Technology for Heavy-Duty Diesel Engines Project ID: ACE032

W.P. Partridge, D. Deka, A. Ladshaw, J.A. Pihl Oak Ridge National Laboratory

S. Joshi, R. Daya, D.S. Trandal, K. Gunugunuri, U. Menon, A. Kumar, K. Kamasamudram, N. Currier, A. Yezerets

Cummins Inc.

H. Hess, H.-Y. Chen **Johnson Matthey Inc.**

DOE Vehicle Technologies Office Annual Merit Review & Peer Evaluation Meeting June 23, 2021; Virtual Meeting

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

VTO Program & Technology Managers:
Gurpreet Singh, Siddiq Kahn, Ken Howden, Mike Weismiller

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Started in 2018 VTO AOP Lab Call
 - AOI-1E: Low Temperature Emissions Control (Heavy Duty)
- Year 3 of 3-year
 - Oct. 1, 2018 to Sept. 30, 2021
 - Percent Complete: 86%
- Planning renewal focused on ASC
 - Formalize in FY22 VTO AOP Lab Call
 - Start ASC work in Q4FY21 or Q1FY22

Budget

- 1:1 DOE:Cummins cost share
- FY21 DOE Funding: \$450k
 - DOE share: \$450k
 - Cummins share: \$450k (in kind)

Barriers

- From **21**st **CTP Research Blueprint**:
 - Emission control cost
 - Low-temperature emission control
 - Robustness in real-world application
- From U.S. DRIVE Roadmap:
 - Low-temperature emission control
 - Compliance via Real Driving Emissions (RDE)
 - Emissions control durability

Partners

- ORNL & Cummins Inc.
- Johnson Matthey (participant)
- Collaborating with CLEERS data & modeling

Milestones

FY	Qtr	Milestone & Objectives	Status
2021	2	Determine kinetic impact of field ageing on commercial SCR catalyst	complete
2021	4	Draft journal manuscript describing kinetic impact of field ageing	on track

Responses to 2020 Review Comments

- Consider impacts of lube-oil & PGM poisons
 - Most lube-oil contaminants are trapped in upstream DPF and do not impact the SCR
 - PGM & lube-oil poisons confined to the front 3-4mm, and excluded from the samples studied
 - Additional ageing routes can be studied in follow-on work using the foundational CRADA studies
- Consider thermal ageing, and defined field ageing (FA)
 - Hydrothermal ageing is part of the Cummins model, & CRADA experimental plan
 - The field-aged sample has been desulfated, but significant amounts of S remain
 - Impact of lab-sulfation and desulfation will be studied in proposed future work
 - The field-aged sample is representative of 90% of >10k systems across different Cummins platforms
 - Separate ageing routes are being studied to understand component contribution to field ageing
- Too much effort on reactor improvements & Expectation that one exists at ORNL or Cummins
 - Replacement of the CRADA-dedicated reactor was necessary & many improvements were implemented
 - Changing to a new catalyst dictated the timing to preserve resources and not duplicate work
 - New programmable/unattended/overnight operation is enhancing project
- Desire for faster progress
 - Needed and CRADA-focused post doc, Dr. Dhruba Deka, onboarded May 2020, & onsite October 2020
- Thank you for the many positive comments
 - Well-designed, unique approach
 - Progress is good, noticeable and tangible
 - Work is highly relevant, and absolutely supports the overall DOE objective

Collaborations and Coordination

• **ORNL**: Bill Partridge (ORNL PI)

Cummins: Saurabh Joshi (Cummins PI)

Johnson Matthey: Howard Hess (JM Lead)

Formally included in CRADA and Project documentation

Teamwork & Roles

ORNL

- **Diagnostics**
- Measurements
- Modeling

Cummins

- Modeling
- Field ageing

Johnson Matthey

 Model catalyst samples

Joint

- Planning
- Results interpretation
- Monthly+ telecons

• CLEERS

- Joint participation in monthly meetings
- Using CLEERS model structure for CRADA open model
- Sharing CRADA spatiotemporal data for CLEERS model

Broader ORNL ACERG DOE Projects

Formal weekly and routine feedback & coordination meetings

ORNL ACERG Catalyst-Research Portfolio

Low Temperature Emissions Control (ACE085) Discover new low T catalysts & traps

CLEERS (ACE022)

Model new trap materials and aging effects on SCR catalysts

Lean Gasoline Emissions Control (ACE033)

Develop pathways for lean gasoline engines to meet emissions with minimum fuel penalty

Chemistry & Control of Cold Start Emissions (ACE153)

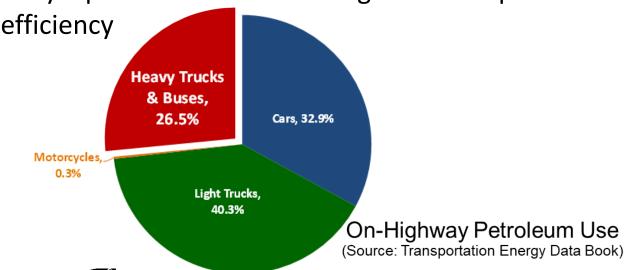
Understand how exhaust chemistry impacts device performance & design

Cummins Emissions Control CRADA (ACE032) Understand how aging affects properties and performance of SCR & ASC catalysts

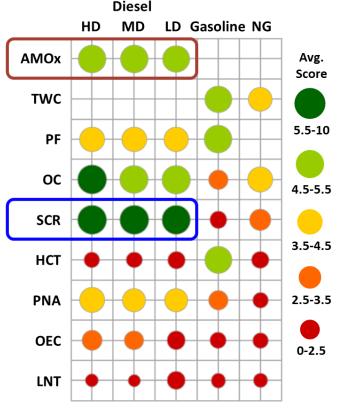
CLEERS

Key Challenge Addressed by Project

- Improving *Durability* of urea-SCR catalysts in Heavy Duty engine applications
- Project focuses on understanding Field-Ageing process and impacts
 - Impact on SCR reaction network & kinetic parameters
 - Improved models
 - Improved design & control models
 - Improved durability through better SCR through-life performance
 - Methods for synthetic field ageing
 - Hydrothermal ageing does not represent field ageing
 - Improve catalyst performance & durability under Real-World Driving Conditions


Relevance

 Improved Field-Ageing Models & Understanding critical to meeting increasing performance requirements

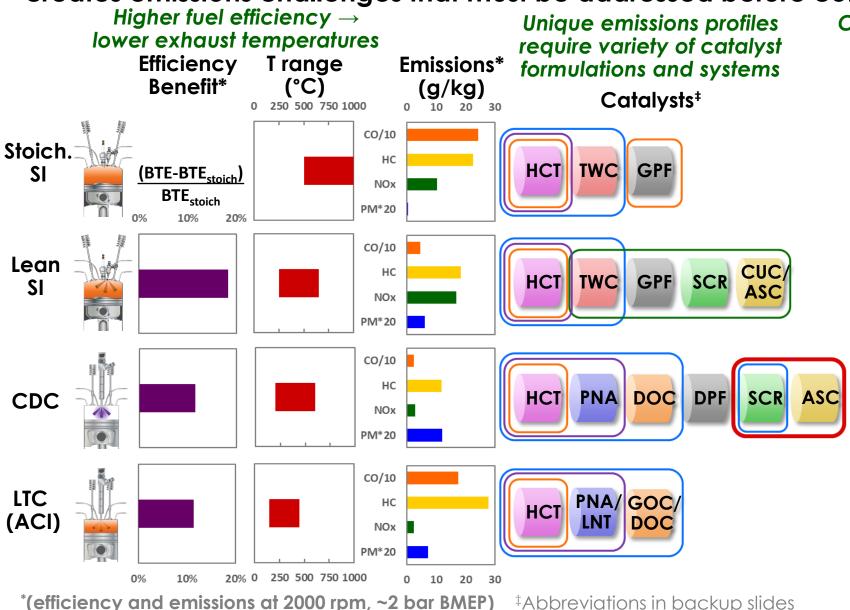

Heavy Heavy-Duty Emissions Regulations							
Current	2027	2031					
CARB/EPA	CARB	CARB					
Useful Life (miles,hr)	Useful Life (miles,hr)	Useful Life (miles,hr)					
435,000 (10yr, 22k hr)	600,000 (11yr, 30k hr)	800,000 (12yr, 40k hr)					

Rapidly Increasing Warranty & Useful-Life Demands

 Better catalyst performance allows engine to be optimized for fuel efficiency

2019 CLEERS Industry Priorities Survey

- SCR & AMOx top technology for Diesel
- SCR Aging: #3 for all HDD tech. & topics
- AMOx ageing & modeling high priority
 - Focus of Future Work



Advanced combustion technologies improve efficiency, but lean low-temperature exhaust creates emissions challenges that must be addressed before commercialization

ORNL R&D portfolio spans wide range of applications, technologies, size scales, commercial readiness

Tasks

CLEERS (ACE022)

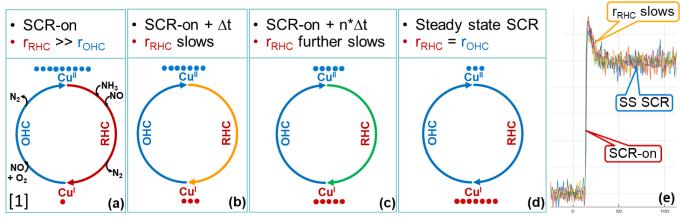
Model new trap materials and aging effects on SCR catalysts

Low Temperature Emissions Control (ACE085)

Discover new low T catalysts & traps

Lean Gasoline Emissions Control (ACE033)

Develop pathways for lean gasoline engines to meet emissions with minimum fuel penalty


Chemistry & Control of Cold Start Emissions (ACE153)

Understand how exhaust chemistry impacts device performance & design

Cummins Emissions Control CRADA (ACE032)

Understand how aging affects properties and performance of SCR catalysts

Background: Determine Kinetic Impacts of Field Ageing via Transient-Response Cu-Redox Half-Cycle Analysis

- RHC: Reduction Half Cycle oxidized Cu (Cu^{II}) is reduced to Cu^I
- OHC: Oxidation Half Cycle $Cu^{I} \rightarrow Cu^{II}$ completing the cycle
- Conversion Inflection (CI) indicates RHC-OHC rate imbalances
- CI shape reflects on half-cycle kinetic parameters
- Use transient analysis to study SCR Field-Ageing
 - Quantify kinetic impact on individual RHC & OHC
 - Insights: ageing process, better lab ageing, models, ...

- Transient Cu-Redox Experimental Protocol
 - Individual & combined half cycles

OHC

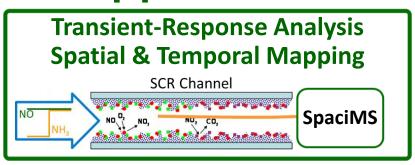
(0.4% / 100ppm)

SCR

OHCb

- Simple Kinetic Model developed
 - Reproduces experimental CI trends

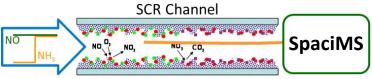
[1] Partridge et al., Appl. Catl. B, V236, p195(2018).

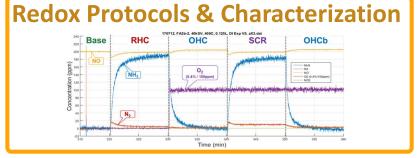


Base

RHC

Technical Approach


Gov. - National Lab - Industry CRADA Partnership
(DOE TO - ORNL - Cummins - Johnson Matthey)



Technical Approach

RADA Partnership Johnson Matthey) CRADA Industry **Cummins** Lab ORNL **National** (DOE

Transient-Response Analysis Spatial & Temporal Mapping

Kinetic Models

Standard-SCR Reduction Half Cycle, RHC

 $ZCuOHNH_3 + NO \rightarrow ZCu + N_2 + 2H_2O$ $Z_2CuNH_3 + NO \rightarrow ZCu + ZH + N_2 + H_2O$ $Z_2Cu(NH_3)_2 + NO \rightarrow ZCuNH_3 + ZH + N_2 + H_2O$

Catalyst Age State & Formulation

Kinetic Impact of Ageing

- NH₃ capacity
- Active sites
- Reaction pathways
- Half-cycle rates

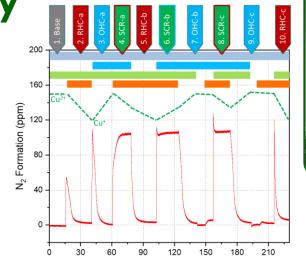
Development & Durability Advances

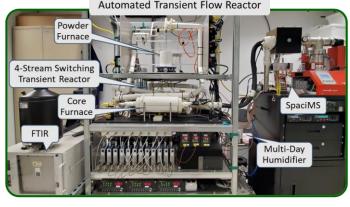
- Improved development models
- Rapid real-world-ageing protocols
- Catalyst formulation optimization
- Enhanced control procedures & models

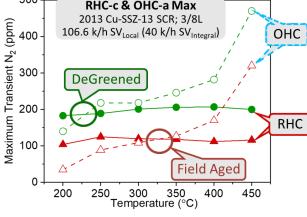
Heavy Duty Emissions Regulations

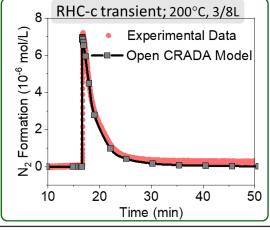
Current	2031
CARB/EPA	CARB
Useful Life	Useful Life
435,000	800,000

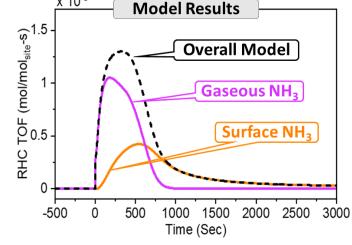
Advanced Durability Solution Pathway

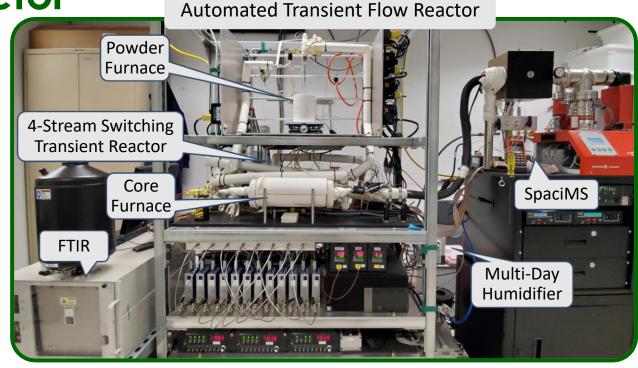


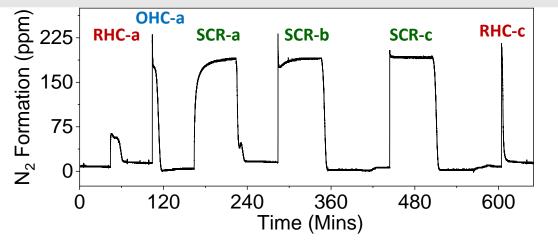

Technical Progress Summary


- Transient-Response Reactor is operating
 - Programed unattended operation increases efficiency
- Expanded Transient-Response SCR-Redox Protocol
 - Greater detail & needed for new Cu-SSZ-13 sample



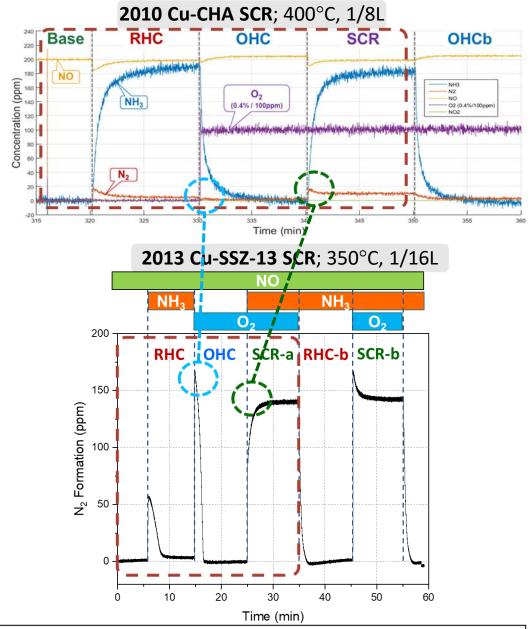

- Quantitative results to come from fitting kinetic parameters
- Cummins Internal SCR model
 - Predicts major RHC features over wide T range
- CRADA Cu-redox Open Model
 - A model we can openly report to public
 - Enhance CRADA value to broader community
 - Initial fits of NH₃ adsorption/desorption & RHC



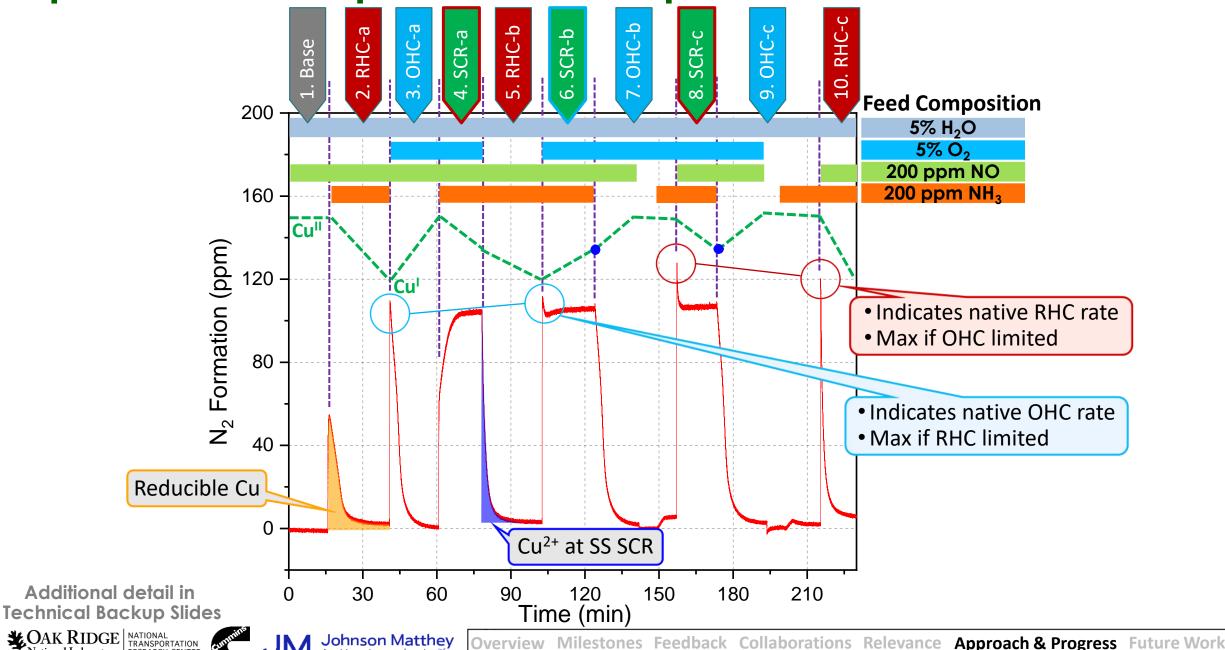


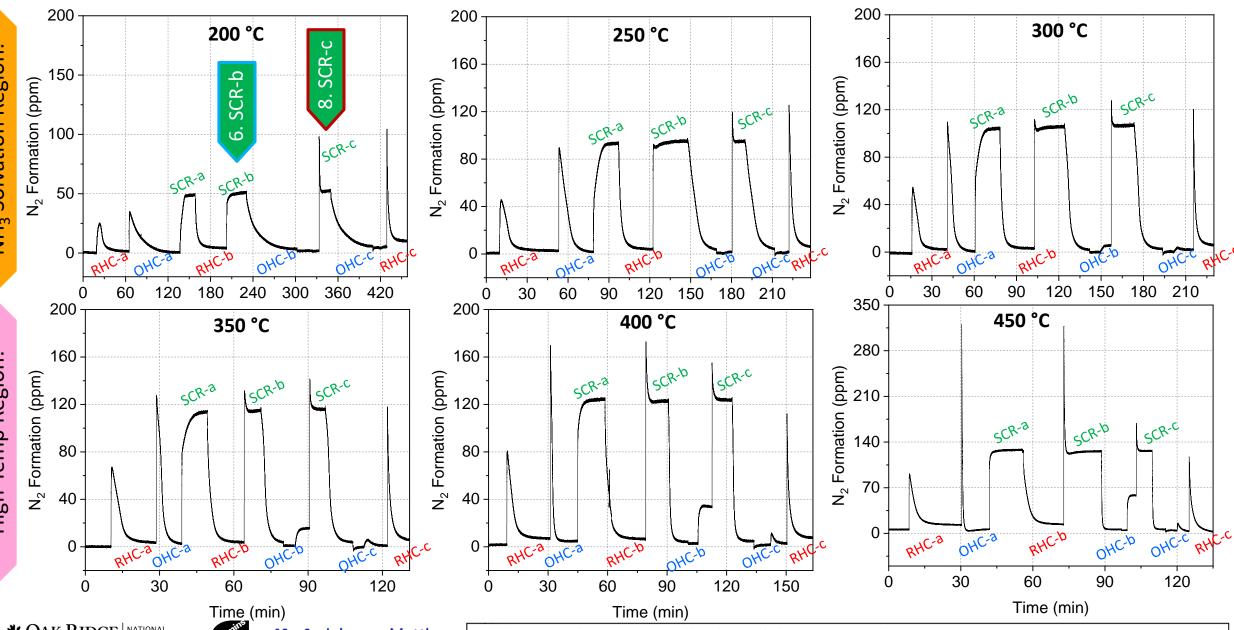
Transient-Response Reactor

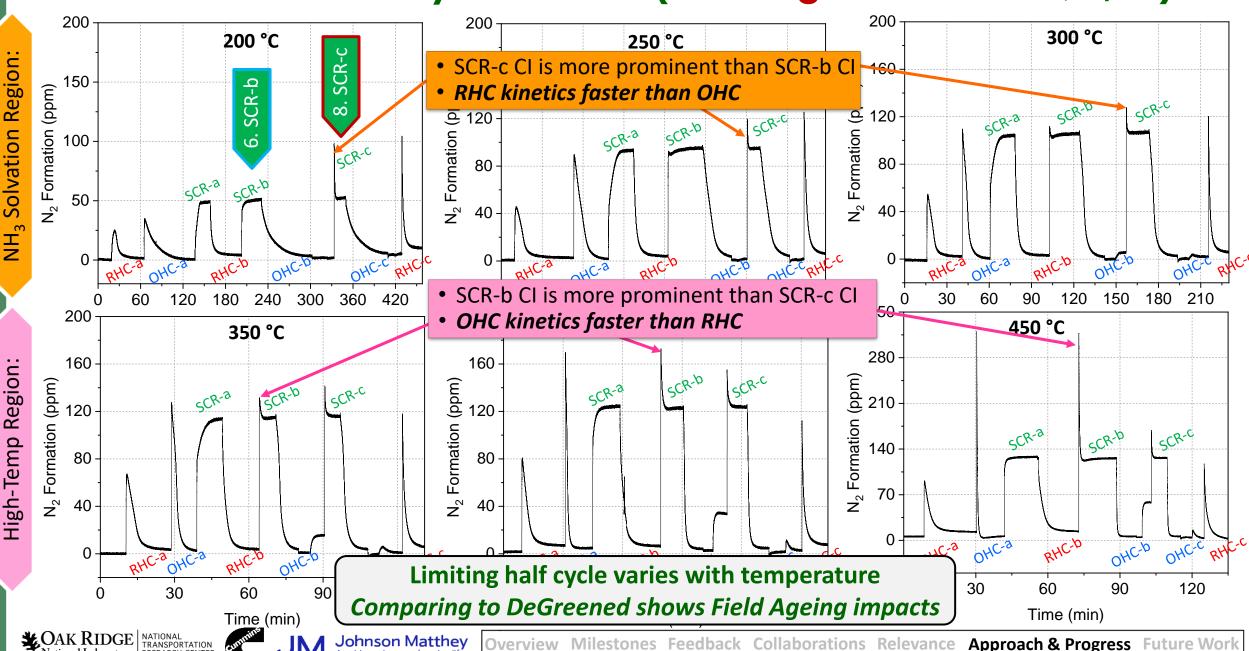
- Reactor is operating:
 - 10-Step Redox Protocols
 - NH₃ TPD with Half-Cycle steps
 - DeGreened & Field-Aged samples
- Using in programed unattended operation
 - Overnight protocol runs
 - Increasing reactor productivity
- Longer 24-7 operation:
 - Implemented multi-day H₂O impinger
 - Designing Cal-gas switching system for unattended calibrations
 - Further reactor productivity
- New Redox & TPR protocols

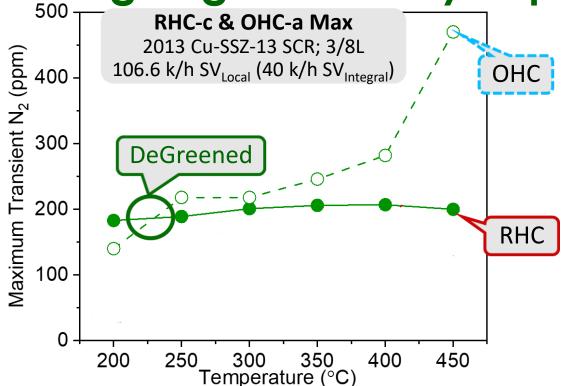

1st Programmed Unattended Protocol; Cu-SSZ-13; DG; 250°C; 1/2L

Expanded Transient-Response SCR-Redox Protocol

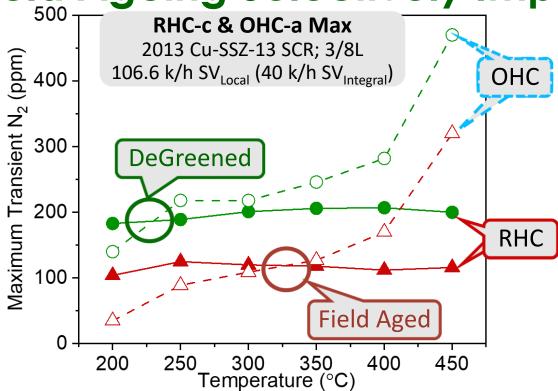

- New commercial Cu-SSZ-13 SCR catalyst is very different from previous commercial Cu-CHA
- New catalyst has significant CI in OHC step:
 - OHC is much faster
- New catalyst has no CI in NH₃-initiated **SCR** step
 - NH₃ loading capacity much more significant
- Differences mandated additional studies
 - Nature of new Cu-SSZ-13 catalyst
 - Development of a new Transient-Response Cu-Redox Protocol
 - Couldn't just implement FY20 plan based on studies of Cu-CHA Field Ageing



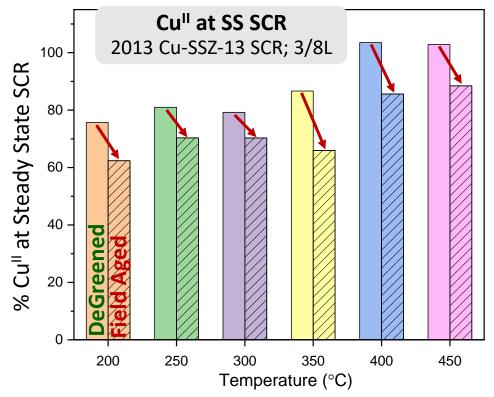

Expanded 10-Step Transient-Response SCR-Redox Protocol


T-Variation in Half-Cycle Rates (Field-Aged Cu-SSZ-13, 3/8L)

T-Variation in Half-Cycle Rates (Field-Aged Cu-SSZ-13, 3/8L)


Field Ageing Selectively Impacts OHC over RHC

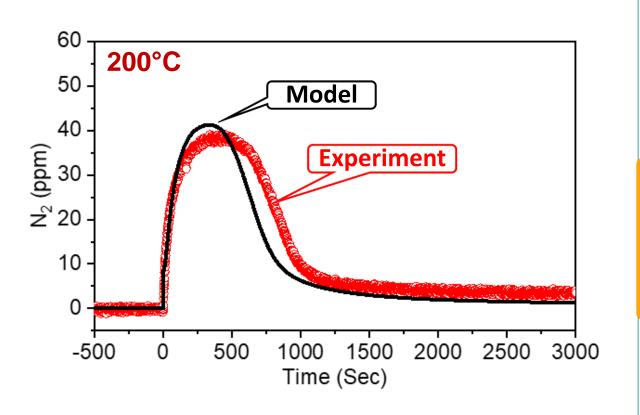
- Native RHC rate varies little with temperature
- Native OHC rate increase with temperature
 - Relatively flat at intermediate temperatures


Field Ageing Selectively Impacts OHC over RHC

- Native OHC rate increase with temperature
 - Relatively flat at intermediate temperatures
- Field Ageing, FA, degrades both RHC and OHC
 - OHC degradation is greater

RHC-OHC crossover shifts to higher T with FA

- Field Ageing reduces oxidized Cu at steady state
- Indicates OHC slowed more than RHC by FA


Quantitative ageing impact from fitting kinetic half-cycle parameters with data & models

NH₃-Initiated RHC; DeGreened Cu-SSZ-13; NO=NH₃=200ppm; 106.6 k/h SV (3/8L, 40 k/h SV_{Integral})

Pseudo Microkinetic Reaction Mechanism

NH₃ Storage in Oxidized State^[1]

$$ZH + NH_3 \leftrightarrow ZNH_4$$

 $ZNH_4 + NH_3 \leftrightarrow ZNH_4NH_3$
 $P + NH_3 \leftrightarrow PNH_3$
 $ZCuOH + NH_3 \leftrightarrow ZCuOHNH_3$
 $Z_2Cu + NH_3 \leftrightarrow Z_2CuNH_3$
 $Z_2CuNH_3 + NH_3 \leftrightarrow Z_2Cu(NH_3)_2$

Standard-SCR Reduction Half Cycle, RHC

ZCuOHNH₃ + NO
$$\rightarrow$$
 ZCu + N₂ + 2H₂O
Z₂CuNH₃ + NO \rightarrow ZCu + ZH + N₂ + H₂O
Z₂Cu(NH₃)₂ + NO \rightarrow ZCuNH₃ + ZH + N₂ + H₂O
ZCuOH + NH₃ + NO \rightarrow ZCu + N₂ + 2H₂O
NH₃-solvated
Cu^{II} Sites

NH₃ Storage on ZCu Sites^[1]

$$ZCu + NH_3 \leftrightarrow ZCuNH_3$$

 $ZCuNH_3 + NH_3 \leftrightarrow ZCu(NH_3)_2$

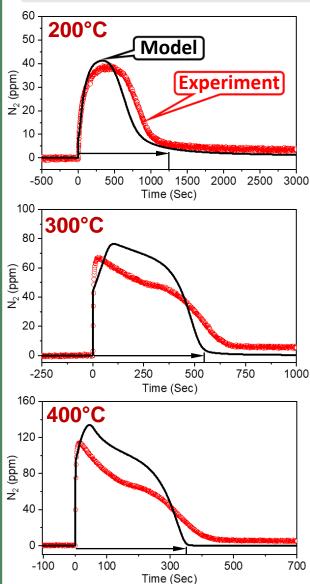
Standard-SCR Oxidation Half Cycle, OHC

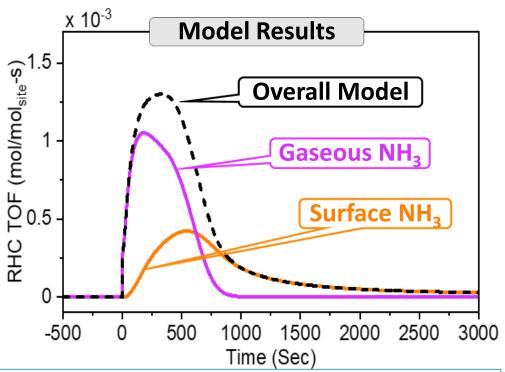
 $Z_2Cu + NH_3 + NO \rightarrow ZCu + ZH + N_2 + H_2O$

$$\begin{array}{l} 2ZCu(NH_3)_2 + O_2 & \iff Z_2Cu_2(NH_3)_4O_2 \\ Z_2Cu_2(NH_3)_4O_2 & \iff Z_2Cu_2O_2 + 4NH_3 \\ Z_2Cu_2(NH_3)_4O_2 + 2NO & \implies 2ZCuOHNH_3 + 2N_2 + 2H_2O \end{array}$$

Dimer formation, titration & NH₃ desorption

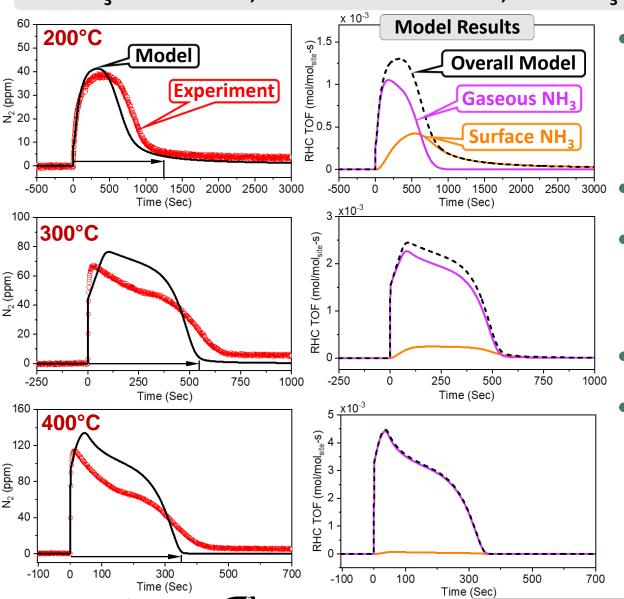
Cu^{II} Sites^[2]


- [1] Daya et al. (2021). Applied Catalysis B: Environmental, submitted.
- [2] Daya et al. (2021). Reaction Chemistry & Engineering. (doi.org/10.1039/D1RE00041A)


NH₃-Initiated RHC; DeGreened Cu-SSZ-13; NO=NH₃=200ppm; 106.6 k/h SV (3/8L, 40 k/h SV_{Integral})

- Model captures variations with increasing T
 - Faster & multi-mode leading edge
 - Development of bimodal nature
 - Faster overall transient

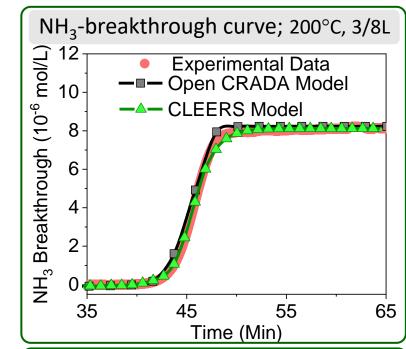
NH₃-Initiated RHC; DeGreened Cu-SSZ-13; NO=NH₃=200ppm; 106.6 k/h SV (3/8L, 40 k/h SV_{Integral})

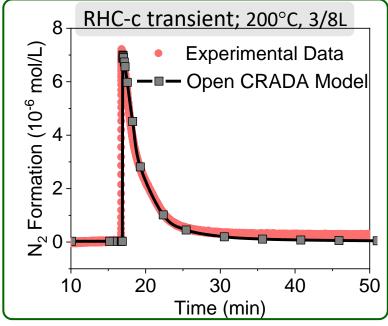


Standard-SCR Reduction Half Cycle, RHC $\begin{array}{c} ZCuOHNH_3 + NO \rightarrow ZCu + N_2 + 2H_2O \\ Z_2CuNH_3 + NO \rightarrow ZCu + ZH + N_2 + H_2O \\ Z_2Cu(NH_3)_2 + NO \rightarrow ZCuNH_3 + ZH + N_2 + H_2O \end{array} \begin{array}{c} NH_3\text{-solvated} \\ Cu'' Sites \\ \\ ZCuOH + NH_3 + NO \rightarrow ZCu + N_2 + 2H_2O \\ Z_2Cu + NH_3 + NO \rightarrow ZCu + ZH + N_2 + H_2O \end{array} \begin{array}{c} NH_3\text{-free} \\ Cu'' Sites \\ \end{array}$

- Model captures variations with increasing T
 - Faster & multi-mode leading edge
 - Development of bimodal nature
 - Faster overall transient
- Model separates Gaseous- & Surface-NH₃ RHC routes

106.6 k/h SV (3/8L, 40 k/h SV_{Integral}) NH₃-Initiated RHC; DeGreened Cu-SSZ-13; NO=NH₃=200ppm;




- Model captures variations with increasing T
 - Faster & multi-mode leading edge
 - Development of bimodal nature
 - Faster overall transient
- Model separates Gaseous- & Surface-NH₃ RHC routes
- Gaseous-NH₃ route accounts for fast onset
 - Captures bimodal onset
 - Dominates with increasing temperature
- Model describes broad NH₃-solvation & high-T range
- Using SpaciMS Redox-Protocol data to validate model
 - Over high/wide SV range via intra-catalyst measurements
 - Oxidation of NH₃-solvated Cu^I sites
 - Oxidation of NH₃-free Cu¹ sites
 - Redox under SCR on reduced & oxidized catalyst
 - Reduction of Cu^{II} sites by NH₃ only & NO only

CRADA SCR-Redox Open Model

- A public CRADA model we can openly report
 - Further enhance CRADA value to broader catalysis community
- Incorporates input from Cummins
- Collaboration with CLEERS CLEERS
 - Using CLEERS base modeling tool developed by Austin Ladshaw
 - Demonstrates utility of this CLEERS tool
 - Mutually benefitting CRADA & CLEERS
- Models used to fit NH₃ adsorption/desorption parameters
 - Good fit, but need more data to identify unique parameters
 - More extensive CLEERS data from separate commercial SSZ-13 results in similar fit – NH_3 ads/des kinetic parameters similar?
- Initial RHC Modeling reasonably fits measured RHC-c transient
 - Captures bimodal nature of measured RHC transient
- Next steps
 - Expand detail, OHC modeling, identify RHC & OHC reaction pathways
 - Combine into an SCR model

Remaining Challenges:

Kinetic impact of Field Ageing

	DeGr	eened	Field Aged		
	RHC	OHC	RHC OHO		
Ea					
Α					

- SpaciMS with 10-Step Redox Protocol experiments
- Fit RHC & OHC kinetic parameters using kinetic model
- **DeGreened**, **Field Aged**, & **Hydrothermally Aged** samples
- Lab HTA Sulfated & DeSulfated samples

Remaining Challenges:

Kinetic impact of Field Ageing

	DeGr	eened	Field Aged		
	RHC OHC		RHC	OHC	
Ea					
Α					

Catalyst-Ageing Kinetic Models

- SpaciMS with 10-Step Redox Protocol experiments
- Fit RHC & OHC kinetic parameters using kinetic model
- DeGreened, Field Aged, & Hydrothermally Aged samples
- Lab HTA Sulfated & DeSulfated samples
- Cummins SCR model
- CRADA SCR open model

Remaining Challenges:

Kinetic impact of Field Ageing

	DeGr	eened	Field Aged		
	RHC	OHC	RHC OHC		
E _a					
Α					

- **Catalyst-Ageing Kinetic Models**
- **Kinetic origins of improved performance** with Low-Temperature formulations

- SpaciMS with 10-Step Redox Protocol experiments
- Fit RHC & OHC kinetic parameters using kinetic model
- DeGreened, Field Aged, & Hydrothermally Aged samples
- Lab HTA Sulfated & DeSulfated samples
- Cummins SCR model
- CRADA SCR open model
- Implement Transient Response Methodology
 - Kinetic impacts on RHC & OHC

Remaining Challenges:

Kinetic impact of Field Ageing

	DeGr	eened	Field Aged	
	RHC OHC		RHC	OHC
Ea				
Α				

- **Catalyst-Ageing Kinetic Models**
- **Kinetic origins of improved performance** with Low-Temperature formulations
- NH₃-Slip Catalyst (ASC, AMOx) Durability
- (Transitioning focus in FY22-24)

- SpaciMS with 10-Step Redox Protocol experiments
- Fit RHC & OHC kinetic parameters using kinetic model
- DeGreened, Field Aged, & Hydrothermally Aged samples
- Lab HTA Sulfated & DeSulfated samples
- Cummins SCR model
- CRADA SCR open model
- Implement Transient Response Methodology
 - Kinetic impacts on RHC & OHC

- Commercial dual-layer ASC, AMOx
- Characterization methodologies for Pt sites
- Impacts of Hydrothermal & Field ageing
- Impacts of real-world sulfur exposure, & DeSulfation

Remaining Challenges:

Kinetic impact of Field Ageing

	DeGr	eened	Field Aged		
	RHC	OHC	RHC OHC		
Ea					
Α					

- Catalyst-Ageing Kinetic Models
- Kinetic origins of improved performance with Low-Temperature formulations
- NH₃-Slip Catalyst (ASC, AMOx) Durability
- (Transitioning focus in FY22-24)

- **Future Work:** (subject to change based on funding)
- SpaciMS with 10-Step Redox Protocol experiments
- Fit RHC & OHC kinetic parameters using kinetic model
- DeGreened, Field Aged, & Hydrothermally Aged samples
- Lab HTA Sulfated & DeSulfated samples
- Cummins SCR model
- CRADA SCR open model
- Implement Transient Response Methodology
 - Kinetic impacts on RHC & OHC

- Commercial dual-layer ASC, AMOx
- Characterization methodologies for Pt sites
- Impacts of Hydrothermal & Field ageing
- Impacts of real-world sulfur exposure, & DeSulfation
- Improved SCR Real-World Durability

Heavy Duty Emiss	ions Regulations			
Current	2031			
435,000 miles	800,000 miles			
Solution Pathway				

- Integrate knowledge & results to advance Durability Solutions
 - Improved catalyst-ageing models & experimental methods
 - Rapid ageing protocols
 - Tools for improved design, control and diagnosing

verview Milestones Feedback Collaborations Relevance Approach & Progress Future Work

Summary

Relevance

- Focus is on kinetic origin of low-temperature performance and field aged SCR catalysts
- Project work enables improved catalyst knowledge, models, design, OBD & control
- Advances DOE goals for improved fuel economy, durability, & real-world emissions

Approach

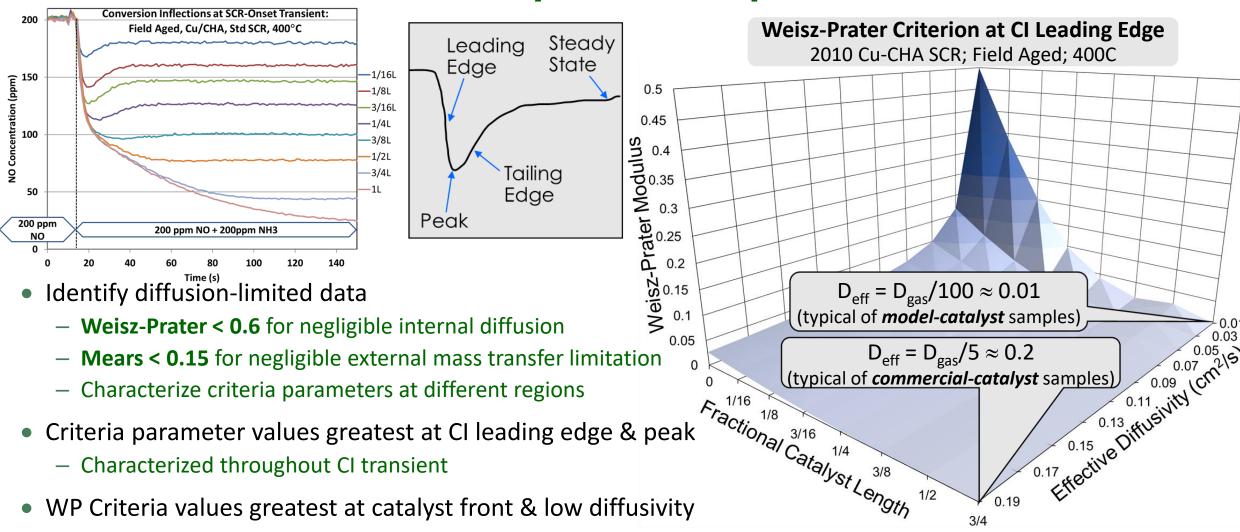
- Apply experimental protocol to probe transient response of Cu-redox half-cycle steps
- Develop and apply model to fit Cu-redox half-cycle kinetic parameters
- Study kinetic impacts of low-temperature formulations and field-aged catalysts

Technical Accomplishments

- Improved programmable transient reactor performing unattended overnight experiments
- New Cu-Redox and TPD protocols developed to study ageing impact on SCR redox cycle
- Impact of Field Ageing on limiting redox half cycle experimentally characterized
- Cummins-Internal and Open-CRADA kinetic models developed and demonstrated

Collaborations

- Johnson Matthey incorporated as project and CRADA participant
- Communicate with community via presentations & publications
- Future Work (Any proposed future work is subject to change based on funding levels)
 - Determine impact of field-ageing on kinetics of commercial Cu-SSZ-13 SCR catalyst
 - Determine kinetic origins of performance for low-temperature formulations

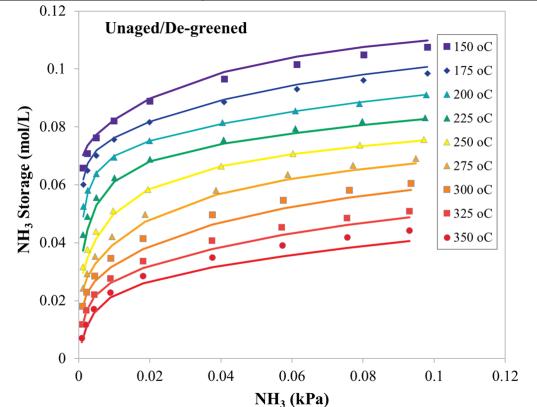


Technical Back-Up Slides

10-Step Protocol, 2013 CMI DG Cu-CHA, 3/8 L SCR-c CI is more prominent than SCR-b CI at 200 °C **RHC** kinetics faster than OHC SCR-b 300 °C 200 °C SCR-b Cl is more prominent than SCR-c Cl at > 200 °C 250 250 S **OHC** kinetics faster than RHC ∞ 6. N₂ Formation (ppm) N₂ Formation (ppm) 100 100 Eormation (ppm) 150 100 OHC-a SCR-a RHC-a RHC-b OHC-b 50 50 онс-р SCR-b CI is more prominent than SCR-c CI 240 300 360 420 480 30 60 90 120 60 120 180 150 180 210 **OHC** kinetics faster than RHC Time (min) Time (min) 500 400 °C 350 °C 450°C OHC-a SCR-c RHC-c 250 250 RHC-400 SCR-SCR-a N₂ Formation (ppm) 100 100 N₂ Formation (ppm) 100 001 Formation (ppm) 300 SCR-b SCR-a 200 100 50 50 OHC-OHC-(OHC-150 60 120 30 60 90 120 30 60 120 150 National Laboratory RESEARCH CENTER Time (min) Time (min) Time (min)

Down Selecting Kinetically Limited SpaciMS Data Sets

- WP & Mears Criterion << limits for diffusivity typical of commercial catalysts
- All SpaciMS CI data is kinetically limited for the Field Aged 2010 Cu-CHA SCR catalyst



Open-CRADA SCR-Redox and CLEERS SCR Models

CLEERS Model

Ammonia inventory data and model comparisons

- Data analysis tool developed with Pyomo.DAE
- Implements a 1D-0D catalyst model
- Used to simulate and parameterize reactions

Open CRADA and CLEERS NH₃-Storage Model:

- CRADA model makes no differentiation in Cu-sites at present
- CLEERS model assumes formation of Z₁CuOH-NH₃, Z₂Cu-NH₃ and Z₂Cu-(NH₃)₂ surface species upon adsorption of NH₃

RHC Model

(Uses NH₃ adsorption kinetics from CLEERS model):

- Reaction 1: $Z_1Cu^{2+}OH-NH_3 + NO \rightarrow (ZCu^{+1}) + N_2 + 2H_2O$ $r_1 = k_1 (Z_1Cu^2 + OH - NH_3)^2 * NO$
- Reaction 2: Z_2Cu^{2+} -NH₃ + NO → (ZCu⁺¹) + ZH + N₂ + H₂O $r_2 = k_2 (Z_2 Cu^2 + NH_3)^2 * NO$
- Reaction 3: $Z_2Cu^{2+}-(NH_3)_2 + NO \rightarrow (ZCu^{+1}NH_3) + ZH + N_2 + H_2O$ $r_3 = k_3 (Z_2 Cu^{2+} NH_3)^2 *NO$

NH₃ storage kinetics on individual active sites

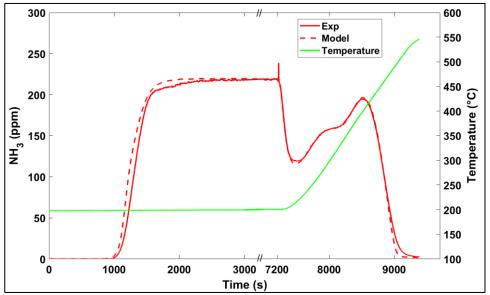
NH₃ Adsorption-Desorption Thermodynamics and Kinetics

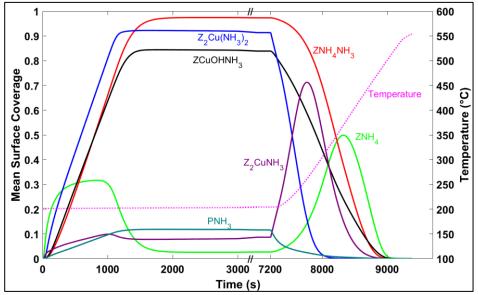
Reaction	K _{eq} . at 200°C	$\Delta_{ m ads} { m H}^0$ (kJ/mol)	Δ _{ads} S ⁰ (J/mol-K)	A _{ads} (1/s)	A _{des} (1/s)
$NH_3 + ZH \leftrightarrow ZNH_4$	2.47e+10	$-169.6 \ (\alpha = 0.1)$	-158.7	5.14e+04	1e+13
$NH_3 + ZNH_4 \leftrightarrow ZNH_4NH_3$	1.97e+05	$-73 \ (\alpha = 0.09)$	-39.2	2.82e+01	3.14e+03
$NH_3 + P \leftrightarrow PNH_3$	6.58e+02	$-48.6 \ (\alpha = 0.65)$	-41	4.43e+01	6.05e+03
NH ₃ + ZCuOH ↔ ZCuOHNH ₃	2.77e+04	$-117.8 \ (\alpha = 0.28)$	-103.7	3.62e+01	9.51e+06
$NH_3 + Z_2Cu \leftrightarrow Z_2CuNH_3$	2.71e+07	$-139.2 \ (\alpha = 0.08)$	-150.2	2.76e+02	1.93e+10
$NH_3 + Z_2CuNH_3 \leftrightarrow Z_2Cu(NH_3)_2$	6.83e+04	$-141.3 \ (\alpha = 0.04)$	-194.4	9.63e+02	1.37e+13

Notation used for Cu-amine complexes and attribution of Physisorbed NH₃

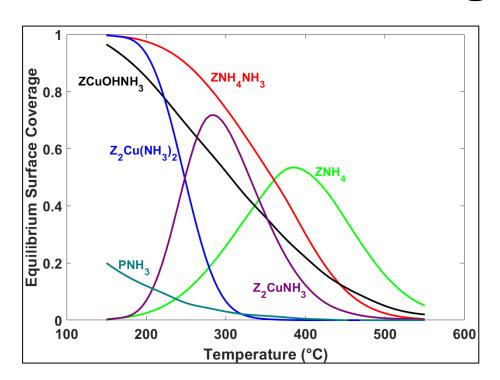
Surface Species	Notation
$Z[(O_f)_y Cu^{II}(OH)(NH_3)(H_2O)_x]$	ZCuOHNH ₃
$Z_2[(O_f)_{y2}Cu^{II}(NH_3)_2(H_2O)_{x2}]$	$Z_2Cu(NH_3)_2$
$Z_2[(O_f)_{y3}Cu^{II}(NH_3)(H_2O)_{x3}]$	Z ₂ CuNH ₃
$ZNH_4(NH_3)_1$ for $l \ge 2$	PNH ₃
EFAl. NH ₃	
$Z[(O_f)_{y4} Cu^{II}(OH)(NH_3)_m(H_2O)_{x4}] for m \geq 2$	
$Z_2[(O_f)_{y5}Cu^{II}(NH_3)_n(H_2O)_{x5}] \text{ for } n \geq 3$	
$Z[Cu^{I}(NH_3)_2(H_2O)_{x6}]$	ZCu(NH ₃) ₂
$Z[(O_f)_{y7}Cu^{l}(NH_3)(H_2O)_{x7}]$	ZCuNH ₃

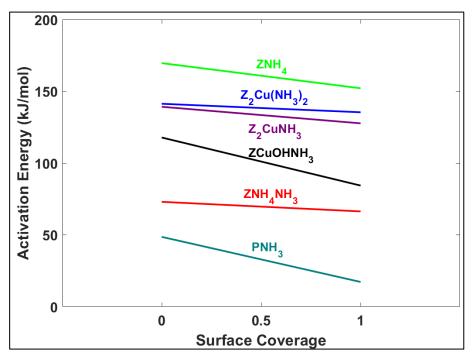
Age: 550°C-4h


NH₃: 200 ppm; H₂O: 7%; O₂:


0%

Adsorption temperature : 200°C Isothermal desorption time : 0s

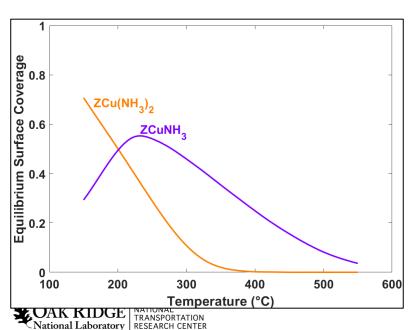

Ramp Rate: 10°C/min

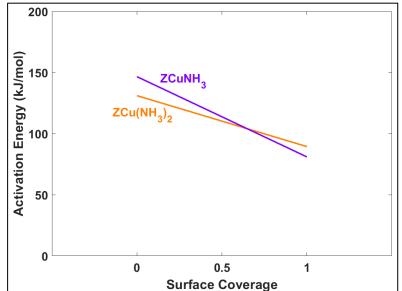

SV: 40k/h

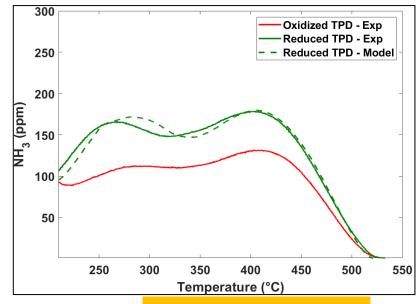
Mean surface coverage and activation energies

Adsorption strength

 $\mathrm{ZNH_4} > \mathrm{Z_2CuNH_3} > \mathrm{ZNH_4NH_3} > \mathrm{Z_2Cu(NH_3)_2} > \mathrm{ZCuOHNH_3} > \mathrm{PNH_3}$

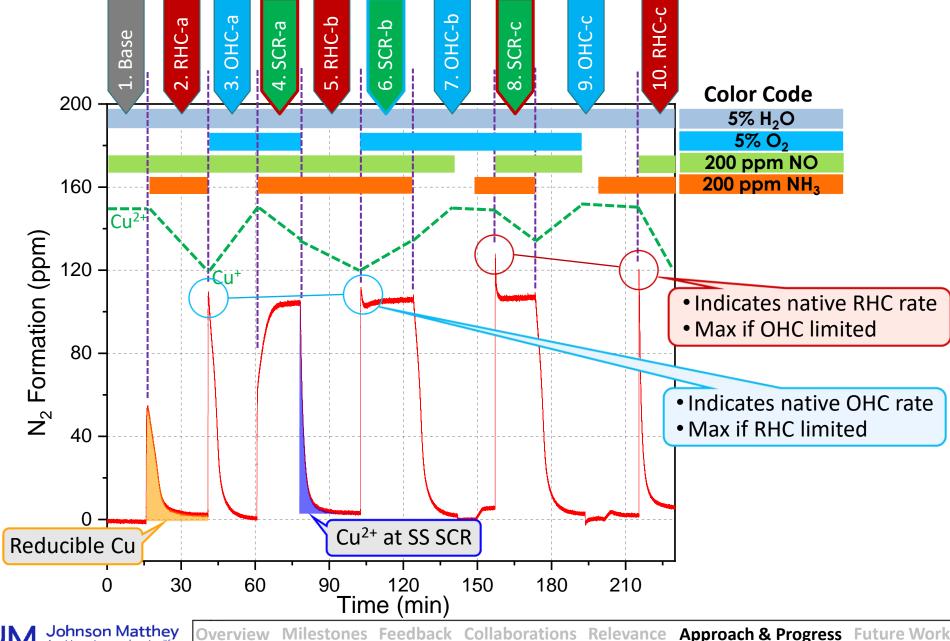

- Model predicts stronger adsorption of NH₃ on Z₂Cu sites relative to ZCuOH sites, as indicated by earlier approach to saturation upon decreasing temperature
- In addition, increased heterogeneity and/or higher repulsive lateral interactions predicted for ZCuOH sites, leading to slower loss of coverage vs. temperature


NH₃ storage kinetics on reduced copper sites


NH₃ Adsorption-Desorption Thermodynamics and Kinetics on ZCu Sites

Reaction	K _{eq} . at 200°C	Δ _{ads} H ⁰ (kJ/mol)	Δ _{ads} S ⁰ (J/mol-K)	A _{ads} (1/s)	A _{des} (1/s)
NH ₃ + ZCu ↔ ZCuNH ₃	5.19e+05	$-146.6 \ (\alpha = 0.45)$	-131.8	1.38e+02	4.82e+06
$NH_3 + ZCuNH_3 \Leftrightarrow ZCu(NH_3)_2$	5.07e+03	$-131 (\alpha = 0.32)$	-162	1.15e+03	2.46e+09

 $ZNH_4 > Z_2CuNH_3 > ZNH_4NH_3 > ZCuNH_3 > Z_2Cu(NH_3)_2 > ZCuOHNH_3 > ZCu(NH_3)_2 > PNH_3$


Age: 550°C-4h
NH₃: 200 ppm; H₂O: 7%; O₂:
10%
Adsorption temperature: 200°C
Isothermal desorption time: 0s
Ramp Rate: 10°C/min
SV: 40k/h

 Model predicts a mix of ZCu(NH₃)₂ (50%) and ZCuNH₃ (50%) species at 200°C, with progressive desorption ZCu(NH₃)₂ and ZCuNH₃ at high temperatures Expanded 10-Step Transient-Response SCR-Redox Protocol

10-Step protocol:

5% H₂O flow throughout

- Base: 200 ppm NO
- RHC-a: NH₃-initiated RHC
- OHC-a
- SCR-a: NH₃-initiated SCR following OHC
- RHC-b: Reduce the catalyst
- **SCR-b**: O₂-initiated SCR following RHC, (native OHC rate)
- OHC-b: Oxidize the catalyst, Turn NO off and NH₃ on, preparation for **NO** initiated SCR
- **SCR-c**: NO-initiated SCR following OHC, (native RHC rate)
- OHC-c: Oxidize the catalyst, Turn NO & O₂ off, and NH₃ on, preparation for NO initiated RHC
- 10. RHC-c: NO-initiated RHC

Abbreviations

AMOx Ammonia oxidation catalyst

ASC Ammonia slip catalyst

CUC Clean-up catalyst

DOC Diesel oxidation catalyst

DPF Diesel particulate filter

GOC Gasoline oxidation catalyst

GPF Gasoline particulate filter

HCT Hydrocarbon trap

LNT Lean NOx trap

MOC Methane oxidation catalyst

OC Oxidation catalyst

OEC Other emissions control catalysts

PF Particulate filter

PNA Passive NOx adsorber

SCR Selective catalytic reduction

TWC Three-way catalyst

ACI Advanced compression ignition

BTE Break thermal efficiency

CDC Conventional diesel combustion

HD Heavy duty

LD Light duty

LTAT Low temperature aftertreatment

LTC Low temperature combustion

MD Medium duty

NG Natural gas

SI Spark ignition

