

2021 DOE AMR Review

Fundamental Understanding of Copper-Zeolite Selective Catalytic Reduction (SCR) Catalyst Aging Mechanism

Feng Gao, Yiqing Wu, Tahrizi Andana, Kenneth G. Rappe, Yong Wang

Institute for Integrated Catalysis **Pacific Northwest National** Laboratory

Unmesh Menon, Yadan Tang, Dylan Trandal, Rohil Daya, Yuhui Zha, Hongmei An, Krishna Kamasamudram

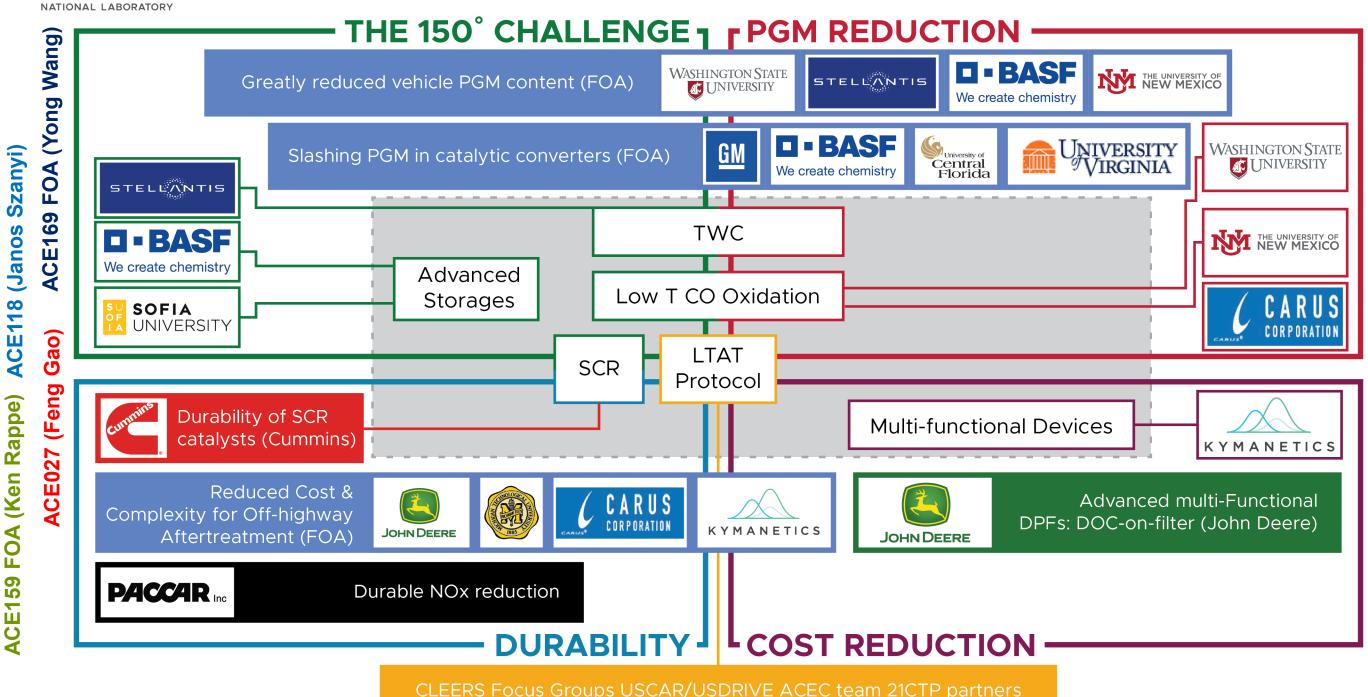
Cummins Inc.

Program Managers: Siddiq Khan, Ken Howden, Gurpreet Singh

The work was funded by the U.S. Department of **Energy (DOE), Vehicle Technologies Office.**

ACE027

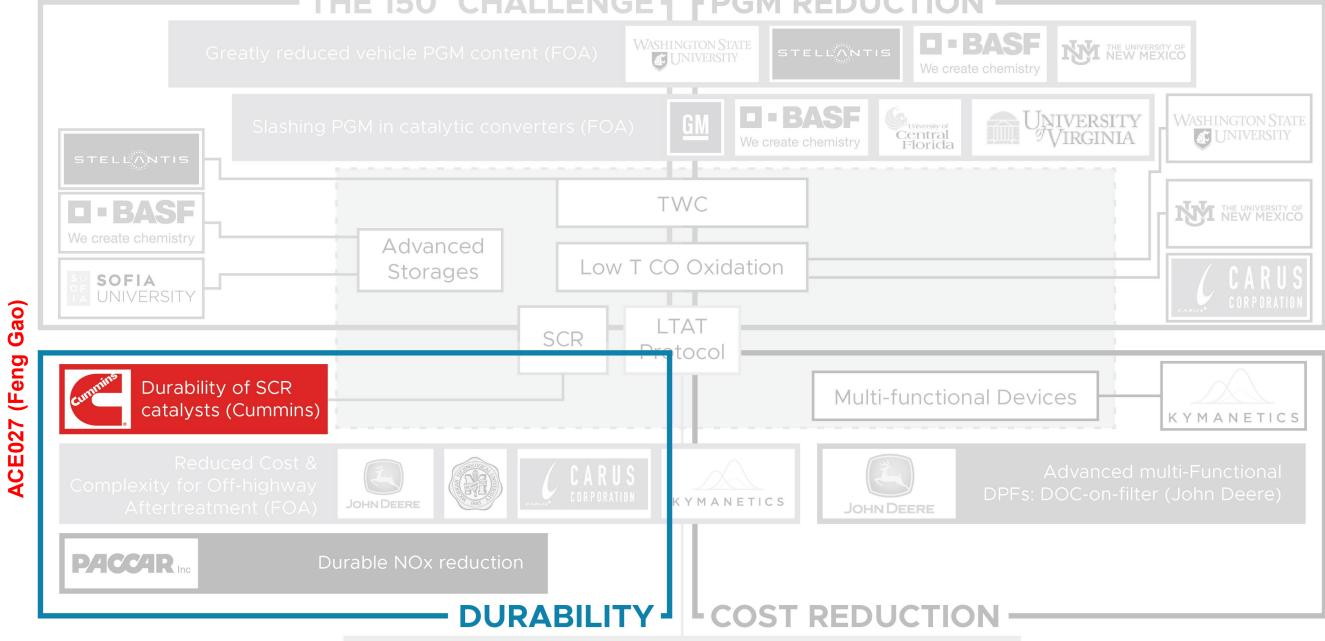
This presentation does not contain any proprietary, confidential, or otherwise restricted information.



Northwest

Pacific

PNNL Fundamental and CRADA Projects: 1) Address the "150 °C Challenge", PGM Reduction, Durability, and Cost; 2) Aligns with Industrial Priorities - Exemplified by 8 AMR Presentations



Cummins CRADA Project Specifically Addresses the SCR Durability through Fundamental Understanding of Aging Mechanisms

THE 150° CHALLENGE 1 FPGM REDUCTION

Pacific

Northwest

Timeline

- Start: March 2020
- End: March 2023
- ➢ 40% complete

Budget

- Total project funding: \$1,800,000
 - > DOE share: \$900,000
 - Cummins cost share: \$900,000
- Funding for 2021: \$300,000

Barriers

- Real world aging shows characteristics very different from aging based on current accelerated lab aging protocols.
- Accurate predictive aging and performance models are needed.
- Extending emission warranty requires much deeper understanding of SCR catalyst aging mechanisms than our current comprehension.

Partners

- CRADA project
 - \succ Cummins, Inc.
 - ➢ PNNL.

2018 roadmap of the U.S. DRIVE Partnership

Emission control technology research needs for combustion strategies. ($\sqrt{-need}$ for emission-control technology, **?** = further research required to determine applicability)

	Low Temperature Combustion		Dilute Gasol Combustio	Clean Diesel		
	LTC-G (Gasoline Fuel)	LTC-D (Diesel Fuel)	S-GDI (Stoichiometric)	L-GDI (Lean)	Combustion	
Lean NOx Catalysts	✓	\checkmark		✓	\checkmark	
Three-Way Catalyst			✓	✓		
CO/HC Oxidation Catalysts	~	✓			~	
HC Traps	✓	✓	?	?	?	
Passive NOx Adsorbers	~	✓	?	?	~	
Particulate Filters	✓	\checkmark	\checkmark	✓	✓	
Multifunction Devices/Systems	\checkmark	\checkmark		~	\checkmark	

March 2018

This CRADA benefits (1) Cummins in developing new technologies to address the future aftertreatment challenges, (2) PNNL/DOE in improving domestic fuel efficiency in the transportation sector and environment protection.

Advanced Combustion and **Emission Control Roadmap**

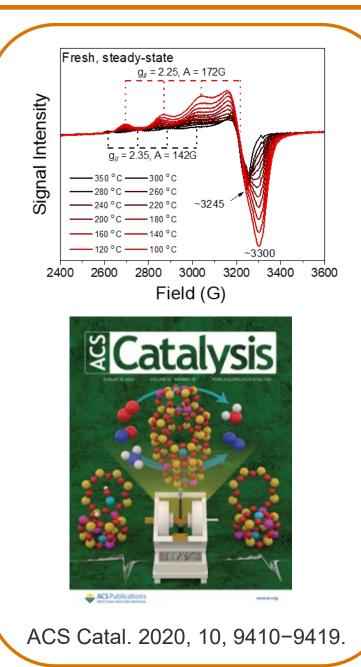
- \succ Develop characterization tools to monitor the dynamic changes upon progressive aging.
- \succ Characterize field-aged samples, identify and model the changes in active sites.
- > Develop accelerated procedures to simulate real-world aging (RWA) of SCR catalysts.

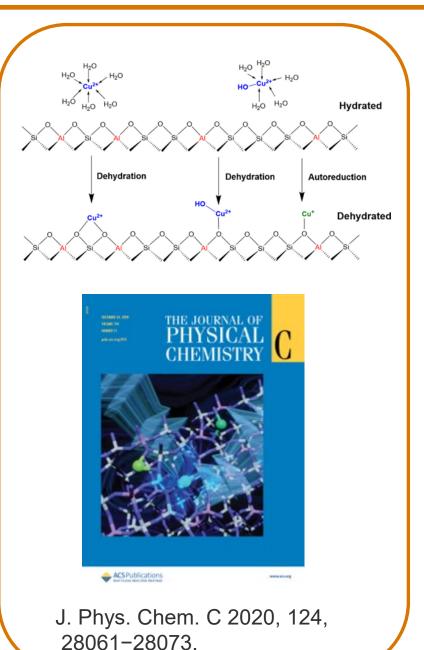
Milestones

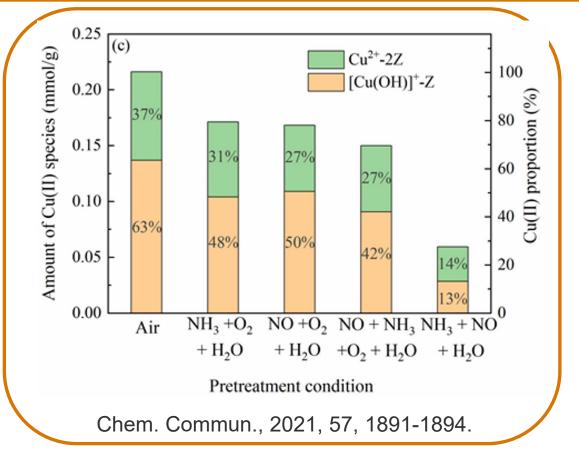
Milestone	Status	Time	Percentage
Generate representative samples using various aging protocols and compare with field aged samples	Complete	09/30/2020	100%
Complete characterization of representative field- and lab- aged samples to identify cause of deactivation, including poisoning by sulfur and changes in Cu species	Complete	03/31/2021	100%
Develop in situ characterization tools such as electron paramagnetic resonance (EPR) for monitoring the changes in active sites on real-world and representative lab-aged conditions	On track	02/28/2022	60%
Generate models to describe the performance degradation	not initiated	02/28/2023	0%

Approach

Prepare and Process Catalyst Materials

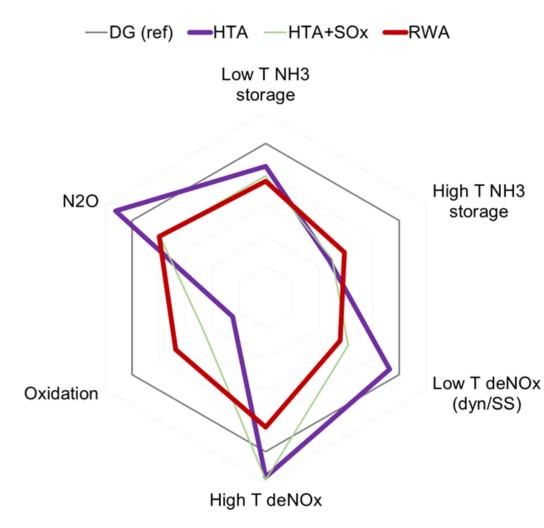

- Lab and field-aged catalysts are characterized by Cummins and PNNL.
- Model SCR catalysts prepared by PNNL, with compositions similar to those of the field-aged samples.
- Utilize expertise and state-of-the-art catalyst characterization and testing facilities at PNNL's Institute for Integrated Catalysis (IIC) and Environmental Molecular Sciences Laboratory (EMSL) to address mechanisms and structure/function.
 - > XRD, XPS, NMR, EPR, TEM/EDS and SEM/EDS
 - \succ NH₃ and NO_x TPD, H₂ TPR
 - Lab-based EXAFS and XANES
 - Lab reaction systems
- Cummins facilities: Lab and Field aging facilities allowing the generation of representative samples, *in situ* FTIR and chemical characterization.





Approach: development of *in situ/operando spectroscopy* capabilities as an example

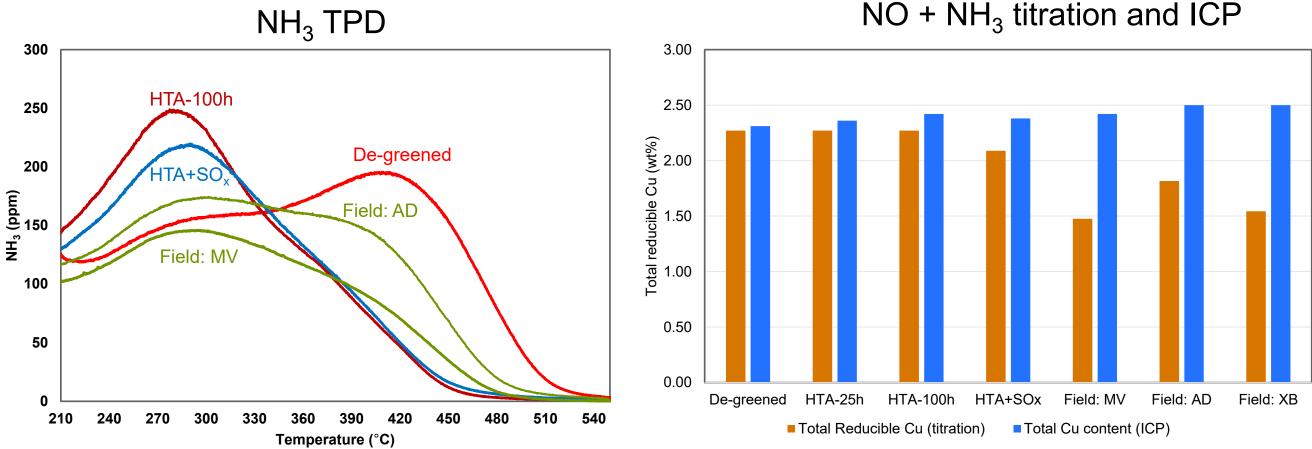
Such new capability development has been mainly under PNNL's "CLEERS" foundational emission control research, which directly benefits this CRADA project.



Technical Accomplishments

- \succ Identified gaps between field-aged and existing simulated aged catalyst behavior.
- \succ Developed model catalyst synthesis and aging protocol development.
- \succ Utilized new tools and methods in studying field-aged catalysts.
 - \ge H₂-TPR coupled with *in situ* XPS to probe the nature of Cu species and the nature of sulfur poisons.
 - > Utilized operando electron paramagnetic resonance (EPR) facilities for catalyst characterization and evaluation.
 - > Utilized new quenching plus chemical titration method to probe status of the Cu active species under SCR conditions (quasi-operando method).

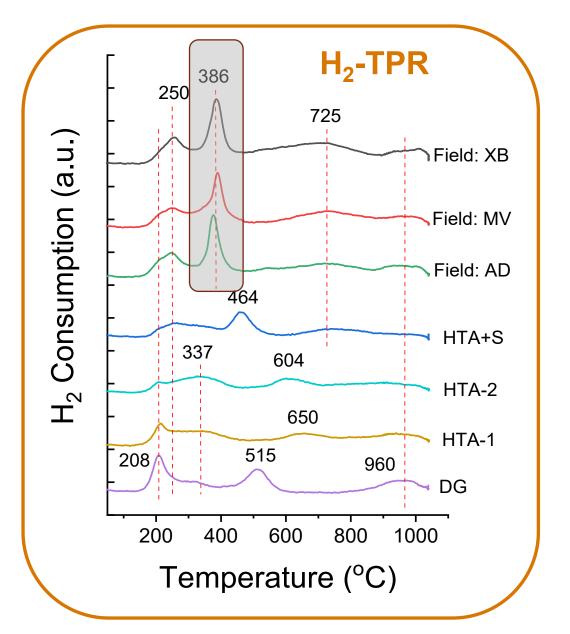
Technical Accomplishments: Field vs. Lab aging Gaps



- \succ The analysis of real-world healthy high mileage Cu-SCR catalyst showed changes in catalyst functions that cannot be explained by hydrothermal aging (HTA) alone.
- \succ HTA+SO_x leads to an accelerated aging of Cu-SSZ-13. However, there are still key gaps between the sulfur-aged vs. engine-aged samples.
- The underlying aging mechanisms in real-world are not well-understood.
 - Additional poisons beyond sulfur;
 - Additional pathways for Cu deactivation, beyond HTA.
 - Multiple pathways for zeolite support degradation.
 - Interaction of deactivation pathways.

6-parameter catalyst evaluation

Technical Accomplishments: Field vs. Lab aging Gaps


- \succ NH₃ TPD on the field aged samples cannot be represented by hydrothermal aging and sulfur exposure.
- > Field aged samples show higher loss of reducible Cu than hydrothermal aging and sulfur exposure as quantified using $NO + NH_3$ titration.

R. Villamaina, et al., ACS Catal. 2019, 9, 8916-8927. 12

Technical Accomplishments: H₂-TPR, EPR and *in situ* XPS for Cu quantification

- > A reduction state centered at 386 °C only appears in field-aged samples. The HTA+S sample shows a similar state at 464 °C.
- \succ Possible origin for this reduction state: Cu-sulfates. However, H₂ consumption quantification suggests that this reduction state should be mainly Cu rather than S reduction.
- Field-aged and HTA+S samples have a unique reduction that may be described by the following prototypical reaction: $CuSO_4 + H_2 \rightarrow Cu(0) + H_2SO_4$.
- > Nature of sulfur contamination is likely Cu-sulfate formation.

Responses to Previous Year Reviewers' Comments

This project was not reviewed last year.

cummins	CRADA partner; provide "field-aged" catalysts, cataly tests, and lead the aging model development. Monthl meetings and yearly face-to-face meetings.
EMSL	Environmental Molecular Sciences Laboratory for prostate-of-the-art instrumentation and expertise, for exa NMR, EPR spectroscopy and STEM imaging.
PURDUE UNIVERSITY®	Collaboration with Professor Jeffrey T Miller in synchr based studies at APS.
前華大学 Tsinghua University	Visiting students working on foundational SCR studie operando spectroscopy) that directly benefit this CRA

yst lab lγ

oviding ample in

nrotron-

es (e.g., ADA.

Remaining Challenges and Barriers

- > Key Challenges include:
 - Upcoming EPA and CARB regulations
 - Increased duration of warranty legislation
 - Increased penetration of renewable fuels
- Key Barriers include:
 - > Introducing representative poisons beyond sulfur into the aging protocols via rational approaches.
 - \succ Possible aging mechanism changes beyond the current durability requirement.

	Warranty				EUL		
Category		Step 1	Step 2	Step 2		Step 1	Step 2
	Current	MY 2022	MY 2027	MY 2031	Current	MY2022	MY 2027
	100,000 mi	350,000 mi	450,000 mi	600,000 mi	435,000 mi		600,000 mi
Heavy HD Class 8	5 yrs	5 yrs	7 yrs	10 yrs	10 yrs	No change	11 yrs
	3,000 hrs	{}	22,000 hrs	30,000 hrs	22,000 hrs		30,000 hrs
Medium HD Class 6-7	100,000 mi	150,000 mi	270,000 mi	360,000 mi	185,000 mi		360,000 mi
	5 yrs	5 yrs	7 yrs	10 yrs	10 yrs	No change	11 yrs
	3,000 hrs	{}	13,000 hrs	18,000 hrs	{}		{}

Proposed Future Research

Investigations on PNNL model catalysts:

- \succ Model catalysts with compositions similar to field-aged catalysts.
- \succ Aging of the model catalysts in the presence of relevant poisons.
- Characterize the aged catalysts using PNNL state-of-the-art tools.
- \succ Correlate characterization results with catalytic performance.
- Initiate aging model development with Cummins:
 - Provide relevant data to Cummins (both realistic and model catalyst data).
 - > Based on feedback from Cummins, modify aging protocols, and then provide updated data to Cummins.

The proposed future work is subject to change based on funding levels.

Presentations and Publications

None

- > Demonstrated clear gaps between Field and Lab accelerated aging that require molecularlevel investigations to comprehend.
- \succ Detailed characterization of 7 representative catalysts from Cummins (H₂-TPR, XPS, EPR) etc.) coupled with SCR tests.
- > The utilization of operando and quasi-operando methods in studying catalysts under the most relevant SCR reaction conditions.
- > Synthesis and aging of PNNL model catalysts for investigations in Year Two.

Technical Back-Up Slides

20

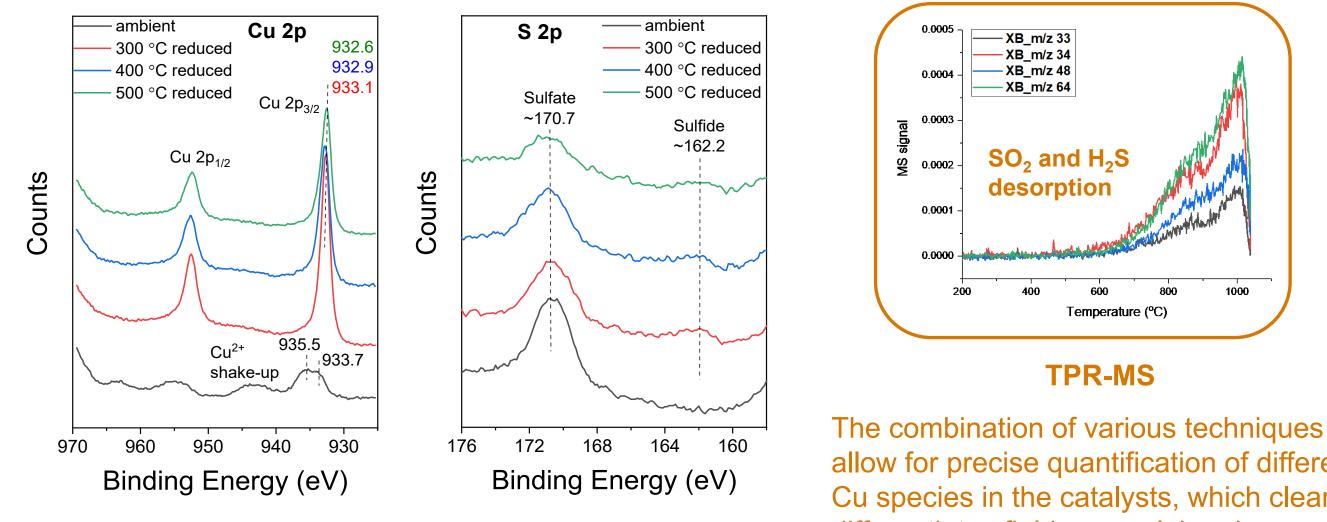
Technical Accomplishments: H₂-TPR, EPR and *in situ* XPS for Cu quantification

7 samples from Cummins

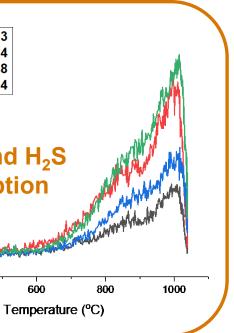
Sample	Cu content ICP (wt%)	Cu content XPS (wt%)	Isolated Cu(II) EPR (wt%)	Reducible Cu NO+NH ₃ titration (wt%)	S content ICP (wt%)	S content XPS (wt%)
De-greened	2.31	2.62	1.39	2.27	-	-
HTA-25h	2.36	2.78	1.45	2.27	-	-
HTA-100h	2.42	2.93	1.41	2.27	-	-
HTA+S	2.38	3.89	1.10	2.09	0.14	0.15
Field: MV	2.42	3.39	0.87	1.48	0.22	0.25
Field: AD	2.50	2.88	1.00	1.82	0.31	0.40
Field: XB	2.50	2.77	0.99	1.54	0.58	0.64

Consistency between ICP and XPS quantification in total Cu and S contents.

 \succ Gaps between EPR and NO+NH₃ chemical titration in isolated Cu(II) contents.


> Aging in the presence of sulfur (both "field" and "lab" samples) induces loss of isolated Cu sites.

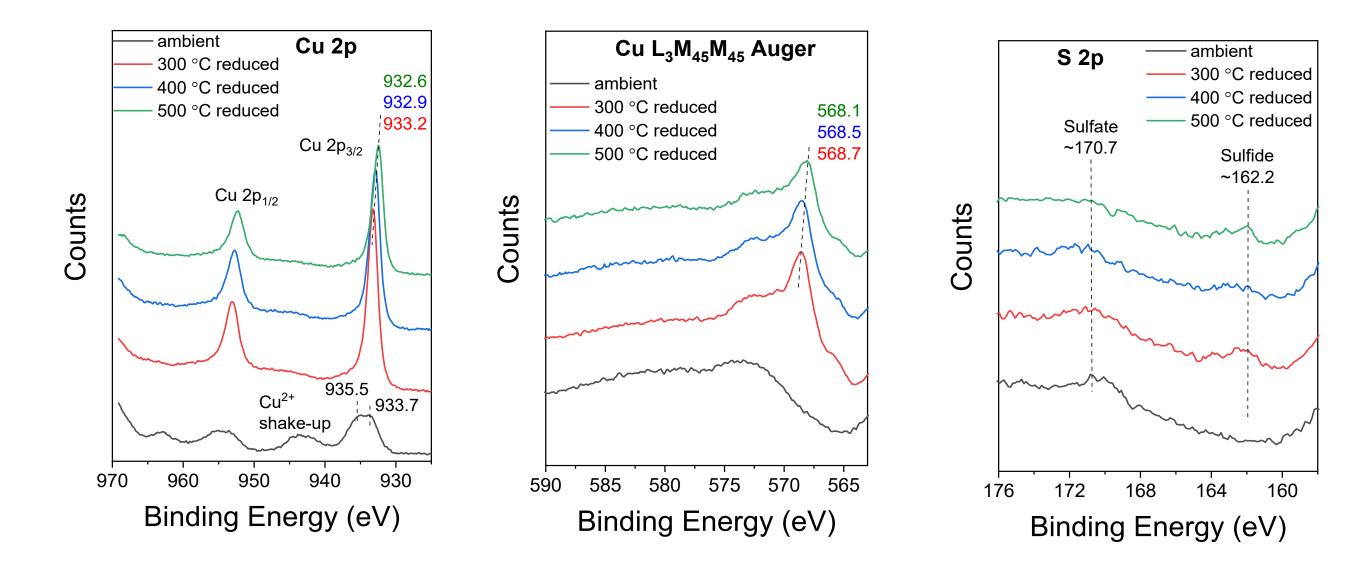
> Elemental quantification as the important first step in understanding aging mechanisms.



Technical Accomplishments: H₂-TPR, EPR and *in situ* XPS for Cu quantification

 \succ Field aged XB as an example. In the XPS pretreatment chamber, ramp the samples in 10% H₂/He from ambient to the target temperatures 300-400-500 °C at 10 °C/min, and cool back to ambient naturally in the same gas.

in situ XPS


TPR-MS

allow for precise quantification of different Cu species in the catalysts, which clearly differentiates field versus lab aging.

XPS studies HTA+S sample

HTA+S sample displays essentially identical reduction behavior as field-returned XB, suggesting similar nature of sulfur poisoning.

Thank you

