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PNNL Fundamental and CRADA Projects: 
1) Address the “150 °C Challenge”, PGM Reduction, Durability, and Cost; 
2) Aligns with Industrial Priorities - Exemplified by 8 AMR Presentations
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Cummins CRADA Project Specifically Addresses the SCR Durability 
through Fundamental Understanding of Aging Mechanisms
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 Start: March 2020
 End: March 2023
 40% complete

Timeline Barriers 

Overview

Budget

 Total project funding: $1,800,000
 DOE share: $900,000
 Cummins cost share: $900,000

 Funding for 2021: $300,000

 Real world aging shows characteristics very 
different from aging based on current accelerated 
lab aging protocols. 

 Accurate predictive aging and performance 
models are needed. 

 Extending emission warranty requires much 
deeper understanding of SCR catalyst aging 
mechanisms than our current comprehension.   

Partners

 CRADA project
 Cummins, Inc. 
 PNNL. 
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Relevance

Emission control technology research needs for combustion strategies. (√=need for emission-control 
technology, ? =further research required to determine applicability) 

2018 roadmap of the U.S. DRIVE Partnership 

This CRADA benefits (1) Cummins in developing new technologies to address the future aftertreatment 
challenges, (2) PNNL/DOE in improving domestic fuel efficiency in the transportation sector and environment 
protection. 
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Objectives

Develop characterization tools to monitor the dynamic changes 
upon progressive aging.

Characterize field-aged samples, identify and model the changes in 
active sites.

Develop accelerated procedures to simulate real-world aging 
(RWA) of SCR catalysts.
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Milestone Status Time Percentage
 Generate representative samples using various aging 

protocols and compare with field aged samples
Complete 09/30/2020 100%

 Complete characterization of representative field- and lab-
aged samples to identify cause of deactivation, including 
poisoning by sulfur and changes in Cu species 

Complete 03/31/2021 100%

 Develop in situ characterization tools such as electron 
paramagnetic resonance (EPR) for monitoring the changes 
in active sites on real-world and representative lab-aged 
conditions

On track 02/28/2022 60%

 Generate models to describe the performance degradation not 
initiated

02/28/2023 0%

Milestones
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Approach

Prepare and Process Catalyst Materials
 Lab and field-aged catalysts are characterized by Cummins 

and PNNL.
Model SCR catalysts prepared by PNNL, with compositions 

similar to those of the field-aged samples.
Utilize expertise and state-of-the-art catalyst characterization 

and testing facilities at PNNL’s Institute for Integrated 
Catalysis (IIC) and Environmental Molecular Sciences 
Laboratory (EMSL) to address mechanisms and 
structure/function.
 XRD, XPS, NMR, EPR, TEM/EDS and SEM/EDS
 NH3 and NOx TPD, H2 TPR
 Lab-based EXAFS and XANES
 Lab reaction systems

 Cummins facilities: Lab and Field aging facilities allowing the 
generation of representative samples, in situ FTIR and 
chemical characterization. 
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Approach: development of in situ/operando 
spectroscopy capabilities as an example

ACS Catal. 2020, 10, 9410−9419.
J. Phys. Chem. C 2020, 124,
28061−28073.

Chem. Commun., 2021, 57, 1891-1894.

Such new capability development has 
been mainly under PNNL’s “CLEERS” 
foundational emission control 
research, which directly benefits this 
CRADA project.   
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Technical Accomplishments

 Identified gaps between field-aged and existing simulated aged catalyst 
behavior.

 Developed model catalyst synthesis and aging protocol development.

 Utilized new tools and methods in studying field-aged catalysts. 

 H2-TPR coupled with in situ XPS to probe the nature of Cu species and the nature of 
sulfur poisons. 

 Utilized operando electron paramagnetic resonance (EPR) facilities for catalyst 
characterization and evaluation.

 Utilized new quenching plus chemical titration method to probe status of the Cu active 
species under SCR conditions (quasi-operando method).
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Technical Accomplishments:
Field vs. Lab aging Gaps

 The analysis of real-world healthy high mileage 
Cu-SCR catalyst showed changes in catalyst 
functions that cannot be explained by hydrothermal 
aging (HTA) alone. 

 HTA+SOx leads to an accelerated aging of Cu-
SSZ-13. However, there are still key gaps between 
the sulfur-aged vs. engine-aged samples.

 The underlying aging mechanisms in real-world 
are not well-understood. 
 Additional poisons beyond sulfur;
 Additional pathways for Cu deactivation, beyond HTA. 
 Multiple pathways for zeolite support degradation.
 Interaction of deactivation pathways.   

6-parameter catalyst evaluation
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 NH3 TPD on the field aged samples cannot be represented by hydrothermal aging and sulfur 
exposure.

 Field aged samples show higher loss of reducible Cu than hydrothermal aging and sulfur 
exposure as quantified using NO + NH3 titration.

Technical Accomplishments:
Field vs. Lab aging Gaps

NO + NH3 titration and ICPNH3 TPD
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R. Villamaina, et al., ACS Catal. 2019, 9, 8916−8927.
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Technical Accomplishments:
H2-TPR, EPR and in situ XPS for Cu quantification
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H2-TPR  A reduction state centered at 386 °C only appears in 
field-aged samples. The HTA+S sample shows a 
similar state at 464 °C.

 Possible origin for this reduction state: Cu-sulfates. 
However, H2 consumption quantification suggests 
that this reduction state should be mainly Cu rather 
than S reduction. 

 Field-aged and HTA+S samples have a unique 
reduction that may be described by the following 
prototypical reaction: CuSO4 + H2 → Cu(0) + H2SO4.

 Nature of sulfur contamination is likely Cu-sulfate 
formation.  
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Responses to Previous Year 
Reviewers’ Comments

This project was not reviewed last year.
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Collaboration and Coordination 
with Other Institutions

CRADA partner; provide “field-aged” catalysts, catalyst lab 
tests, and lead the aging model development. Monthly 
meetings and yearly face-to-face meetings. 
Environmental Molecular Sciences Laboratory for providing 
state-of-the-art instrumentation and expertise, for example in 
NMR, EPR spectroscopy and STEM imaging.  

Collaboration with Professor Jeffrey T Miller in synchrotron-
based studies at APS. 

Visiting students working on foundational SCR studies (e.g., 
operando spectroscopy) that directly benefit this CRADA. 
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Remaining Challenges and 
Barriers

 Key Challenges include: 
 Upcoming EPA and CARB regulations 
 Increased duration of warranty legislation 
 Increased penetration of renewable fuels

 Key Barriers include: 
 Introducing representative poisons beyond sulfur into the aging protocols via rational 

approaches. 
 Possible aging mechanism changes beyond the current durability requirement. 
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Proposed Future Research

 Investigations on PNNL model catalysts: 
 Model catalysts with compositions similar to field-aged catalysts. 
 Aging of the model catalysts in the presence of relevant poisons.  
 Characterize the aged catalysts using PNNL state-of-the-art tools.
 Correlate characterization results with catalytic performance. 

 Initiate aging model development with Cummins: 
 Provide relevant data to Cummins (both realistic and model catalyst data). 
 Based on feedback from Cummins, modify aging protocols, and then provide updated 

data to Cummins. 

The proposed future work is subject to change based on funding levels.
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Presentations and Publications

None
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Summary

 Demonstrated clear gaps between Field and Lab accelerated aging that require molecular-
level investigations to comprehend. 

 Detailed characterization of 7 representative catalysts from Cummins (H2-TPR, XPS, EPR 
etc.) coupled with SCR tests. 

 The utilization of operando and quasi-operando methods in studying catalysts under the 
most relevant SCR reaction conditions.

 Synthesis and aging of PNNL model catalysts for investigations in Year Two.  
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Technical Back-Up Slides
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Technical Accomplishments:
H2-TPR, EPR and in situ XPS for Cu quantification

7 samples from Cummins
Sample Cu content 

ICP (wt%)
Cu content 
XPS (wt%)

Isolated Cu(II) 
EPR (wt%)

Reducible Cu 
NO+NH3

titration (wt%)

S content 
ICP (wt%)

S content 
XPS (wt%)

De-greened 2.31 2.62 1.39 2.27 - -
HTA-25h 2.36 2.78 1.45 2.27 - -
HTA-100h 2.42 2.93 1.41 2.27 - -

HTA+S 2.38 3.89 1.10 2.09 0.14 0.15
Field: MV 2.42 3.39 0.87 1.48 0.22 0.25
Field: AD 2.50 2.88 1.00 1.82 0.31 0.40
Field: XB 2.50 2.77 0.99 1.54 0.58 0.64

 Consistency between ICP and XPS quantification in total Cu and S contents. 
 Gaps between EPR and NO+NH3 chemical titration in isolated Cu(II) contents.
 Aging in the presence of sulfur (both “field” and “lab” samples) induces loss of isolated Cu sites.  
 Elemental quantification as the important first step in understanding aging mechanisms. 
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Technical Accomplishments:
H2-TPR, EPR and in situ XPS for Cu quantification

 Field aged XB as an example. In the XPS pretreatment chamber, ramp the samples in 10% H2/He from ambient 
to the target temperatures 300-400-500 °C at 10 °C/min, and cool back to ambient naturally in the same gas. 

in situ XPS 
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The combination of various techniques 
allow for precise quantification of different 
Cu species in the catalysts, which clearly 
differentiates field versus lab aging. 
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XPS studies HTA+S sample

 HTA+S sample displays essentially identical reduction behavior as field-returned XB, suggesting similar nature 
of sulfur poisoning. 
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