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Technical Approach

* Combines best practices in machine
learning algorithms (deep-learning, feature
engineering, etc.) with detailed physics-
based models for cloud cover and cloud
optical depth forecasts.

HAIMOS

Multi-
objective
adaptive
optimization

* Integrates information derived from the
new GOES satellites sensors and cloud
cover simulations from LES.

* Spatial and temporal sensing/modeling of clouds at much
higher resolutions than previously available.
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Traditional Approach
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HAIMOS Approach

. Forecast Verification and
Predictors :
Postprocessing assessment
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HAIMOS optimization

* Motivation: Improving the forecast skill during large variability

CPR;

Test inputs in terms of bias-variance metrics

current ( measu red d ata) an d futu re :\::-::?:,ge Satelllte-de.rlved |rrad|a.nce da.ta (CPR) for the
Forecasted irradiance from CPR. Several
Optimization model RNV GHI from the NAM model NAM
orovemens e spsarnt, - [ o xerocasoma
improvements are observed.

periods. [Data____|Descripion
target locations and neighboring nodes (49 in
(NAM forecasts) irradiance
forecasts are available, denoted by the
m Total Cloud cover from NWP model NAM
WL UEYETE COD and cloud fraction for the target location
data (single node and extended domain)

* Input selection depending on the ITze e nae gt mezayies
total)
variability. forecess
. . Yool Ei=l COD data for the t t locati | d
Selects input that ranks highest and exi;d(:d dirfarﬁ? ocation (single node
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BP3 Results — HAIMOS

* Bias and forecast skill for GHI for _ o
the 6 SURFRAD and SOLRAD
locations and forecast horizons ol

ranging from 1 to 5 hours. =
) D 5| [=FoL -
* On average HAIMOS can achieve g =|[= x|
a forecasting skill ¥~30% across mgﬁgg e s
different climate zones and TlE;L T
forecasting horizons. Skill [%]
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BP3 Results — Adaptive HAIMOS

* Adaptive protocols for HAIMOS as a GHI
function of the forecast variable (GHI or T ot e
DNI) and the forecast horizon resulted in ey
higher forecasts skills. < Or fﬁ 120; T /
* As expected, improvements depend on m 43 116 Iy
the local irradiance variability (both skills % St %E%( -
and skill improvements are not uniform) — e A -
» Asymptoting to maximum possible skill, 10— oY i |
but still requires further study 6 20 30 40 =0 &b

Skill [%]

: ENERGY | &Riviinae enemey "
2021 Solar Forecasting WOFkShOp SOLAR ENERGY TECHNOLOGIES OFFICE



BP3 Results — CNN(HAIMOS + GOES-16 ABI)

* Explored merging GOES images and HAIMOS data

*  The HAIMOS data produced in previous periods is formatted into a 11x11
matrix and concatenated with the 11x11 GOES image — see figure

* The models were trained 10 times for each location and forecast horizon

in order to account for the random initialization of the CNNs.

GOES + HAIMOS Convolutional Neural Forecasting/Modeling
data Network of Solar Irradiance .

Convolution

= HAIMOS data reshaped
into 11x11 matrices

= GOES images centered over
target location
Prediction
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BP3 Results — CNN(HAIMOS + GOES-16 ABI)

« The plot compares the

i - - forecasting accuracy for the
140,_55’5 o validation set, in terms of

™ g [ RMSE, for all locations and
120 = --oee HAIMOS [ o horizons

s CNN(HAIMOS,GOES)

* Dashed lines = HAIMOS

* Solid lines = HAIMOS+GOES
-+ Merging HAIMOS data
obtained from ground
stations and CIF forecasts
Horizon [h] with GOES data results in a

. The solid lines indicate the average RMSE for the 10  consistent RMSE reduction.
CNNs. The shaded band indicates the minimum and
maximum RMSE obtained out of those 10 models. SOLAR ENERGY -
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BP3 Results — HAIMOS training for Area 1 test framework

® Validation of HAIMOS forecasts according Area 1 test framework.
® Day-Ahead GHI forecasts for SURFRAD and SOLRAD locations.
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BP3 Results — HAIMOS training for Area 1 test framework

platform.

forecasts identified as “UCSD”.

Table of total metrics
Forecast
HNX_UCSD_2019

Hanford California Current Day NAM ghi

Table of total metrics

Forecast
GWN_UCSD_2019

Goodwin Creek MS Current Day NAM ghi

MAE

23

34.5

MAE

433

554

MBE

-7.66

-24.6

MBE

-1.6

-22.8

RMSE

46.9

68

RMSE

88.2

115

Skill

0.311

nan

Skill

0.234

nan

%/H I

Validation of HAIMOS forecasts using the Solar Forecast Arbiter (SFA)

Error metrics reported by SFA for Hanford and Goodwin Creek. HAIMOS
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BP3 Results — HAIMOS training for Area 1 test framework

®  SFA comparison between ground data, HAIMOS forecasts and NAM forecasts for
Hanford. SFA produces both timeseries and scatter plots for forecasted vs
observed data. It is possible to zoom which allows for a detailed inspection of the

data.
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