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Better fuels. Better engines. Sooner.




The Challenge

Maintain desirable attributes of
diesel engines while achieving
net-zero carbon, nitrogen oxides,
and soot




BACKGROUND JMaotivation

Potential solutions:

Society needs cost-
effective, clean, low-
carbon powertrains for 5 - - Batteries (cons: expensive,
applications that —_— | heavy, large)

require:

« Electric motors powered by

7 _ * Fuel cells (cons: expensive,

Long range 'Sy R low energy density of H, fuel,
: current high net CO,)

Rapid re-energizing

* Diesel engines powered by

Light weight

: . * Petroleum fuels (cons: high
Compact size S g TR net CO,, toxic emissions)

« Sustainable fuels (cons: toxic
emissions, expensive) u




BACKGROUND Why diesel? ©)

Conventional Diesel Combustion
(CDC)

(_I _—_Incandescence
Engme crank- 'J;from hot soot

Cost-effective
Inherently high efficiency

Easy to control ignition timing
shaft angle

O

' Liquid

fuel 5N
sprays -
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Fuel-flexible

High torque & power density
Low cyclic variability
Durable & reliable

Low hydrocarbon emissions
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Low carbon monoxide emissions

Low nitrogen oxides (NO,) emissions X




BACKGROUND Why does diesel make soot & NO,?

Mixing before autoignition
g befor? attolg NO

rCharge-gas
Injector tip entrainment Autoignition

\ s

0 S—

+| Liftoff length N s

Low [N | High
Soot concentration

B Liquid fuel

[__1 vapor-fuel/charge-gas mixture = Diffusion flame

[ 1 Autoignition zone B Thermal nitric oxide production zone
[ Initial soot formation B Soot oxidation zone
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BACKGROUND J The soot/NO, trade-off

0.1 —
Soot/NOx trade-off curve for
0.08 conventional diesel combustion -
with conventional diesel fuel Measures to
< oosk attenuate soot
= - "
) Current emissions tend
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8 004  on-road to Increase .
» limits NO
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US EPA = U.S. Environmental Protection Agency, NOy [g/kWh]

g = gram, kWh = kilowatt-hour




BACKGROUND J The soot/NO, trade-off
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BACKGROUND J The soot/NO, trade-off

0.1 —
Soot/NOx trade-off curve for
0.08 conventional diesel combustion -
with conventional diesel fuel It’s difficult to
£ 006 get “in the ]
=
> Current box” to meet
= US EPA o
S 0.04r  on-road emissions 7
limi .
mits regulations!
0.02 \
0 P | 1
107 10° 10’

NO,, [g/kWh]




The Goal

Low-carbon fuel blendstocks and
engine combustion strategies to
reduce NO, and soot emissions




OBJECTIVE Maintain all the desirable attributes of CDC... @)

v/

Secure

0.02

0.015
Typical soot/NOx

trade-off curve for
cDC

0.01F

Soot [g/kWh]

0.005

6 8
NO, [a/kWh]

...with 10X-100X lower soot & NO, emissions
...while achieving net-zero carbon with home-grown fuels. =




Key Takeaways

We’'re well on the path to achieving
the goal




TAKEAWAYS We're well on the path to achieving the goal (®)

« Screened hundreds to thousands of potential fuels to identify those
meeting critical diesel properties

* |dentified those made via low-net-carbon pathways from biomass and
waste feedstocks:

« Hydrocarbons (lowest barriers to introduction)
« Esters
« Ethers (highest barriers to introduction)

* Ducted fuel injection with oxygenated fuel breaks the soot/NO, trade-off
 Maintains desirable attributes of conventional diesel combustion




Research Approach

Connect engine performance
to fuel properties to fuel chemistry




APPROACH Link properties to engine operation @)

Hypothesis:

* Took a fuel-properties-based, composition-

Equivalent fuel agnostic approach

properties result | | | -
» Considered new engine designs for realizing

emission benefits

In equivalent
performance




APPROACH  Link properties to engine operability and fuel handling @

Rapid fuel ignition (cetane number)
Complete evaporation (boiling point or T90)
Cold temperature operability (cloud point)
Fuel pump/injector operability (viscosity)
Safety in handling (flashpoint)

Stability in storage (oxidation stability)




APPROACH

What biomass-

and waste-derived
blendstocks contribute
desired fuel properties?

* Boiling point
 Flashpoint

» Melting or cloud

point

* Cetane number

|dentify blendstocks

©)

-

-
-
g,

High-level
«® '.0.. ®° screening
I e 0.

\ 0. 00O 5 Tier 2

Candidate

~ one liter ;
selection

e @ oo
Q- O-)
\ D5 O & Tier 3:

~ gallons .. .. Candidate
\ ® evaluation

quantity of fuel required u




APPROACH

Evaluate impacts

Feedback between co-optimized blended fuel price and
impact on sales of next year's co-optimized Sl vehicles Yields and cost for bicfuels
production (from TEA)

What feedstock
Vehicle fleet BS M growth is required J E D I ) ]
composition to meet demand? Net job benefits

How will the biofuels ) What are the ecenomic vs. time associated

(including MEOSEA7 it How many biorefineries ~ impacts from biofuel withicazoptimized

i fuel deployment
co-optimized need to be constructed ~ Plant contstruction? Ry
Sly to meet demand?
Volume of fuel
consumed by type
Bioeconomy
AG E Total annual petroleum and water consumption,
GHG and air pollutant emissions from the LD vehicle
What are the energy and sector in each Co-Optima scenario

environmental impacts
of the biofuels industry?

Life cycle fossil energy and water consumption,
GHG and air pollutant emission intensities of various
bioblendstocks and conventional fuel pathways

Energy,

material G R E ET

flows

B 4 What are bioblendstocks’
life cycle energy and
water consumption, and

ASSERT Models:

Benefits Analysis

air pollutant emissions?

Techno-economic and
wells-to-wheels life cycle
analyses inform biofuel
research

Validated models linked by
analysts answer complex

guestions on impacts




Notable Outcomes

* Many sustainable blendstock
options

« Pathway to near-zero soot and
very low NO,




OUTCOMES

Many blendstock options

e Cetane number > 40 (most >
48), lower heating value > 28
MJ/kg, acceptable flashpoint,
cloud point, and other
properties

* Blendstock greenhouse gas
(GHG) emissions reduced by
50% or >60% in many cases

* Potential to be produced at
$5.50/GGE or better

Top 14 MCCI blendstocks report to be released soon

Hydrocarbons
)\/\/]\/\/]\/ R N S I S S Q
P N N P e W e v @“
farnesane : . : . .
Fischer-Tropsch diesel hydrothermal liquefaction oil from wet
waste, algae, and algae-wood blends
POSSSEEseoNSe ot PN

isoalkanes made
from ethanol

isoalkanes via volatile fatty
acids from food waste

hydroprocessed esters and fatty
acids (renewable diesel)
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Ethers
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4-butoxyheptane dioxolanes alkoxyalkanoates




OUTCOMES

Many blendstock options

* Hydrocarbons (lowest barriers to
introduction)

» Ester-based renewable diesel and
Fischer-Tropsch diesel from natural
gas are produced commercially
today

* Esters (some barriers to use at
high blend levels)

 Ethers (highest barriers to
introduction)

» Storage stability examined and
some will require antioxidant
additives

» Assessment of toxicity and
biodegradation is ongoing

Hydrocarbons
P N NN NN
famesane Fischer-Tropsch diesel hydrothermal liquefaction oil from wet
waste, algae, and algae-wood blends
/\)\/'\/\/
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hydroprocessed esters and fatty
acids (renewable diesel)
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OUTCOMES Biofuels reduce GHG emissions

» Wide range of well-to-
wheels GHG
emissions reductions

» Top candidates all
reduce GHG

emissions by >60%

« Petroleum gasoline
emissions are ~95 g
CO,/MJ

-30

Bicyclohexane

Long Chain Primary Alcohols
4-(Hexyloxy)Heptane

Cyclopropane

4-Butoxyheptane

Short Chain Ester from Qilseed Crops
n-Undecane

Hexyl-Hexanoate
5-Ethyl-4-Propyl-Nonane

Mixed Dioxolanes

Long Chain Mixed Alcohols

Farnesene

U.S. Renewable Diesel

Fatty Acid Fusel Esters

Renewable diesel via HTL of Whole Algae
Hydroxyalkanoate-Based Ethyl-Esters
Fatty Alkyl Ethers (SO)

Hydroprocessed Esters and Fatty Acids
Fatty Alkyl Ethers (Mix)

U.S. Biodiesel (FAME)

Renewable diesel via HTL of Whole Algae/Woody Blend
Renewable diesel via HTL of Wet Waste
Fatty Alkyl Ethers (YG)

One-Step POMEs from Methanol
Isoalkanes from Volatile Fatty Acids [Bio.]
Fischer Tropsch Fuels

Isoalkanes from Volatile Fatty Acids [Displ.]* -202 g COe/MJ |

L

Life Cycle GHG Emissions, g CO,-eq/MJ

0

90 120 150

Net Total:

uoioNpPay OHO %09

Displacement Credit

@ Carbon Sequestration from Landfill
@ Non-Combustion Emissions
OFeedstock

ONatural Gas

m Diesel

DO Electricity

B Hydrogen

ENaOH

@ Chemicals
OEnzymes/Cellulase

O Catalysts

B Fuel Distribution

ENet Combustion

e Net Total

*Note: The negative GHG emissions from the "lsoalkanes from Volatile Fatty Acids” pathway is because of the credits of avoided emissions from landfill of the food waste feedsfock.




OUTCOMES Blendstocks remain more expensive than petrodiesel @

Long Chain Primary Alcohols (BC
4-Butoxyheptane (BC

. Mixed Dioxolanes (BC
» Technologies range

from early R&D to pre-
commercial

)

)

)

4-(Hexyloxyl)Heptane (BC)

5-Ethyl-4-Propyl-Nonane (BC)

Long Chain Mixed Alcohols (TC)

Renewable Diesel via HTL of Whole Algae (TC)

Market renewable fuels One-Step POMEs from Methanol (TC)
(biodiesel, renewable )
diesel) may be ;
constrained by )
)

)

feedstock supply

I
Fatty Alkyl Ethers 3 (SO) (CL
Fatty Alkyl Ethers 1 (Mix) (CL
Fatty Alkyl Ethers 2 (YG) (CL
Renewable Diesel via HTL of Algae/Wood Blend (TC
Renewable Diesel via HTL of Wet Wastes (TC
Alkoxyalkanoate Ether-Esters (BC

Favorable —

Unfavorable

O Feedstock
O Upgrading and Recovery (CAPEX)
O Utilities/Ancillary Units (OPEX)

B Co-Product Credits

O Conversion (CAPEX
B Upgrading and Recovery (OPEX)

3

m Conversion (OPEX)
O Utilities/Ancillary Units (CAPEX)
® MFSP




OUTCOMES Blendstocks reduced soot and NOx

0.12
. - Increas 'n EGR - 30% Renewable Diesel
* All bioblendstocks result in 0.10 « ng —— 30% Waste HTL Diesel
lower soot P —— 30% Isoamyl Ether
< — 30% Mixed OME
3
« Some blends tolerated S 006 — 30% 1-Decanol
h. h I I f h t .g —— 30% Soy Biodiesel
Ig er .eve S O exnaus S o004 —— 30% Methyl Decanoate
gas recirculation (EGR), —— 30% Hexyl Hexanoate
. 0.02 5 = :
leading to even lower NO, T — Certifcation Diesel
0.00
0 1 2 3 4 5 6

NO,, g/kWh

EGR tolerance = ability to maintain low soot @ high EGR u




OUTCOMES Introduced ducted fuel injection (DFI) @)

* DFlis a simple, mechanical
approach for improving diesel
combustion

| Bunsen and Roscoe,
h Phil. Trans. Royal Soc.

| :
* Motivated by the Bunsen burner | 1 } Jondon 147:355-380,
concept | L |

1 fhrIHs
=




OUTCOMES First-ever engine experiments with DFI @

« DFl is a simple, mechanical 3
h for improving diesel S -"dcrcoTi
approacr P g from hot soot
combustion ,
; . Duct
- Motivated by the Bunsen burner O \L
concept > £
» Initial engine experiments showed /’Blue flame
that DF| is effective at curtailing/ Ry Qe oot

eliminating soot

S. Ashley, https://www.scientificamerican.com/ a
article/can-diesel-finally-come-clean/



https://www.scientificamerican.com

OUTCOMES DFI + dilution breaks the soot/NO, trade-off @)

0.1 :
Bl 21 mol% O,
0.08 L Soot/NOx trade-off curve for m 18 i
' conventional diesel combustion m 16 DFI
—_ m 14 data
L
0.06 |- |12 -
2
m .
- Current doi: 10.1016/
9 0.04 F j.jaecs.2021. i
7 US EPA 100024
on-road
limits
0.02 / -
oL—m uoE N B~
10" 10° 10"

NO, [g/kWh]

*Results for ~2.6 bar gross indicated mean effective pressure, 1200 rpm, steady state, 2-hole injector, No. 2 diesel fuel u




OUTCOMES DFl is synergistic with oxygenated fuels @)

* Many low-net-CO,, sustainable fuels are oxygenated

~100X Lower Soot

Conventional Diesel Combustion

no EGR (21% O,)

Bl Diesel fuel with 25 vol% oxygenate,
moderate EGR (16% O5,)

oxygenation |

= 100 I Diesel fuel, no EGR (21% O»)

E 10X lower B Diesel fuel, moderate EGR (16% O

§, with DFI iesel fuel, moderate (16% Oy)

§ Ducted Fuel Injection doi: 10.1016/
7] j.Jaecs.2021.
5 [] Diesel fuel, no EGR (21% O,) 100024

- 107 /-\ 1 . o

£ ~10X lower ] Bl Diesel fuel, moderate EGR (16% O,)

9) with fuel | I Diesel fuel with 25 vol% oxygenate,

=

©

I

*Results for ~2.6 bar gross indicated mean effective pressure, 1200 rpm, steady state, 2-hole injector a




Next Steps

Net-zero carbon and removing
barriers to market entry




Realizing the potential @)

 Further reduce carbon

intensity Net-zero-carbon fuel development

* Increase blend level Leverage Co-Optima work, extending GHG reduction

: : target from 60% to net zero
« Scaling up for commercial g °

production while reducing 0 Expand scope to include potential e-fuel candidates
GHG even further

» Learning to achieve net-zero Net-zero criteria and GHG emissions
criteria pollutants 'g Develop ducted fuel injection for soot-less operation

« Overcoming adoption barriers Develop improved emission control systems for lean
Fuel quality standards NO, and low-temperature oxidation
Regulatory compliance
Engine manufacturer concerns
Multimedia assessment
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Q&A
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