

Hydrogen as an Energy Carrier Jacob Thorson February 17th, 2021

Images: NREL

Making Hydrogen with Electrolysis

- Alkaline electrolysis cell (AEC)
- Anion exchange membrane electrolysis cell (AEMEC)
- Proton exchange membrane electrolysis cell (PEMEC)
- Direct seawater electrolysis (DSE)
- Solid oxide electrolysis cell (SOEC)

PEM Electrolyzer at NREL

Adapted from Schmidt, O. 2017. "Future Cost and Performance of Water Electrolysis: An Expert Elicitation Study." International Journal of Hydrogen Energy, October, 23.

NREL | 2

-H₂O

Supporting Equipment for Hydrogen Production and Storage

Storing Hydrogen

- Physical: Compressed, liquified
- Material: Chemical (NH₃, CH₃OH, etc.) & Reversible (metal hydrides, adsorption)

Images: NREL

Using Complementary Energy Storage Technologies to Meet Storage and Power Requirements

¹ Pumped hydro capacity is limited due to geographic constraints. Estimated maximum potential is <1% of U.S. electrical energy demand ² As hydrogen, ammonia, or synthetic natural gas

Ruth, Mark F., Jadun, Paige, Gilroy, Nicholas, Connelly, Elizabeth, Boardman, Richard, Simon, A. J., Elgowainy, Amgad, and Zuboy, Jarett. *The Technical and Economic Potential of the H2@Scale Hydrogen Concept within the United States*. United States: N. p., 2020. Web. doi:10.2172/1677471.

So, Why Hydrogen?

- Like electricity, hydrogen is an energy vector
- Hydrogen is flammable but nontoxic and dissipates quickly in the atmosphere
- Electrolyzers can utilize highly variable power and have been demonstrated at a range of scales
- Hydrogen fuel cells produce electricity with zero local emissions and low noise
- Fast-fueling supports existing logistics and operations
- Hydrogen has a very high energy density [energy/mass] (but low volumetric density [energy/volume])
- Hydrogen can be used as a renewable feedstock for alternative fuels and other industrial products

Thank you! Jacob Thorson jthorson@nrel.gov

Images: NREL

	Pressure	Water Volume	Mass Stored	Cost Estimate		Technology	
Technology	(MPa)	(m³)	(kg-H ₂) ^a	(\$/kWh) ^b	(\$/kg-H ₂)	Status	Deployment
Steel Tank	1 - 100	0.7	32	45	900	Current	Onshore
(Type I)							
Pre-stressed	0.7 – 87.5	22	1000			Large LNG	Onshore
Concrete						Systems	
Wrapped Steel	0.7 – 87.5	0.77	35.4			Current	Onshore
Tank (Type II, II-							
S)							
Pipeline Storage	0.7 - 10	6,100	50,000	25.8	516	Current/ Natural	Onshore/
						Gas	Underwater
Undersea	0.6 – 8	35,705	22,500			Air prototype	Underwater
Inflatable						29.5 m ^c	
Undersea	0.7 – 87.5	22	1000			Future	Underwater
Concrete Lined ^c							
Underground,	1 – 23	40,000	672,000	3.6	72	Future	Onshore
Lined Cavern							
Underground	5.5 – 15.2	566,000	6,000,000	1.75	35	Current	Onshore
Salt Cavern							
Spherical Vessels	0.1 - 1	32,000	27,000			Natural Gas	Onshore
Aquifer Storage	15 – 17	4,141,000	54,000,000			Natural Gas	Onshore
Cryogenic	2	3,400	230,000			Current	Onshore
Storage							

Data collected from (FIBA 2021; Penev 2013; Pimm, Garvey, and de Jong 2014)

Electrolysis Technologies

Technology:	Alkaline	PEM	SOEC	AEM	DSE
Operating Temperature	60°-100°C	50°-90°C	650°-1000°C	40°-60°C	TBD
Typical Outlet Pressure	< 435 psi (3 MPa)	< 2900 psi (20 MPa)ª	< 363 psi (2.5 MPa)	< 508 psi (3.5 MPa)	-
System Electrical Conversion (kWh/kg) ^b	50-79	50-83	39.8-50 ^c	57-69	-
Dynamic Response Speed	Seconds	Milliseconds	Seconds	Milliseconds	-
Electrolyte	Aqueous alkaline electrolyte	Polymer membrane	Ceramic membrane	Polymer membrane	Seawater
Demonstrated Stack Durability	60,000- 90,000 hr	20,000- 80,000 hr	< 35,000 hr	> 5,000 hr	-
Produced H ₂ Gas Purity (%)	> 99.3	> 99.9	> 99.9	> 99.9	-
Cold Start Time (min)	< 60	< 20	< 60 - 600	< 20	-
Lower Dynamic Range (%)	10–40	0–10	30	5	-
System Capital Cost (\$/kW)	~500-1,600	~450-2,800	~500-2,400+	-	-

^a High pressure PEM electrolysis, >70 MPa outlet pressure has been demonstrated (Martin et al. 2019)

^b The HHV and LHV of hydrogen is 39.4 kWh/kg and 33.3 kWh/kg respectively

^c Additional thermal energy usage of 5 to 12 kWh/kg

Examples Applications at a Hydrogen Hub Port

Icons from Noun Project with Credit to:

Emka Angelina, Daniela Baptista, Smalllike, Luis Prado, Fabio Rinaldi, Jasmine Christine, Gerardo Martin Martinez, Vectors Point, Jon Trillana, Blaise Sewell, Luke Anthony Firth, Javier Cabezas, Lutfi Gani Al Achmad, Trevor Dsouza, Peter van Driel, Nick Dominguez, Creative Stall, Nirbhay, Kiran Shastry

- 1. Air transport
- 2. Unmanned vehicles
- 3. Chemical processing
- 4. Backup/Auxiliary power
- 5. Remote monitoring and Navigational aids
- 6. Underwater computing
- 7. Marine vessel auxiliary power
- 8. Marine vessel primary power
- 9. Rail transport
- 10. Material handling
- 11. Heavy duty vehicles
- 12. Liquid fuel production
- 13. Local H_2 production
- 14. Pipeline injection
- 15. Underground storage
- 16. Aquaculture
- 17. Ocean mineral extraction