Towards Metrics for Resilience Characterization and Challenges in Valuing Distribution System Resilience Improvements

MICHAEL KINTNER-MEYER (PNNL)

GMLC 1.1 METRICS ANALYSIS
GMLC1.5.7: LAB VALUATION ANALYSIS TEAM

April 7, 2021
Resilience Workshop

Contact: Michael.Kintner-Meyer@pnnl.gov
Overview of Presentation

► Landscape of metrics and processes specific to resilience characterization
► Delineation between **reliability** and **resilience**
► 2 approaches toward Resilience Characterization
 ■ Attribute-based
 ■ Performance-based
► Example of R&D to improve resilience of grid infrastructure and how to value it.
When reliability ↑ then (usually - NOT always) resilience ↑

When flexibility ↑ then resilience ↑
Landscape of Existing and Proposed Metrics – Example: Reliability (GMLC 1.1)

Distribution Reliability

<table>
<thead>
<tr>
<th>Existing metrics</th>
<th>Existing (data needed)</th>
<th>Proposed Metrics</th>
<th>Proposed Data Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAIFI</td>
<td>Total customers served</td>
<td></td>
<td>Interruption Cost</td>
</tr>
<tr>
<td>SAIDI</td>
<td></td>
<td></td>
<td>Customers interrupted (by type of customer)</td>
</tr>
<tr>
<td>CAIDI</td>
<td>Customer interruption duration</td>
<td></td>
<td>Characteristics of interruptions by customer type (e.g., duration, start time)</td>
</tr>
<tr>
<td>CAIFI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTCAIDI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASAI</td>
<td>Customer hours service availability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAIFI</td>
<td>Total customer momentary interruptions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEMI</td>
<td>Total customers experiencing more than n sustained outages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEMSMI</td>
<td>Total customers experiencing more than n momentary interruptions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>Customers interrupted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMI</td>
<td>Customer minutes interrupted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASIFI</td>
<td>Total connected kVA of load interrupted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASIDI</td>
<td>Total connected kVA served</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CELID</td>
<td>total number of customers that have experienced more than eight interruptions in a single reporting year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SARI</td>
<td>Circuit outage number and duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COR</td>
<td>number of correct operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COR</td>
<td>total number of operations commanded</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DELI</td>
<td>total distribution equipment experiencing long outages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEMI</td>
<td>length of interruption (by equipment type)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACOD</td>
<td>Transmission circuit outage and duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACSCI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TACS</td>
<td>total amount of equipment that have more than N # of interruptions in a single year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOHMY</td>
<td>Outages per hundred miles per year</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Landscape of Existing and Proposed Metrics – Example: Resilience (GMLC 1.1)

## Existing (metrics)	Existing (data needed)	Proposed Metrics	Proposed (data needed)
Cost of recovery		Cumulative customer-hours of outages	Customer interruption duration (hours)
Utility revenue lost	Outage cost for utility ($)	Cumulative customer energy demand not served	Total kVA of load interrupted
Cost of grid damage	Total cost of equipment repair	Avg (or %) customers experiencing an outage	Total kVA of load served
during a specified time period			
Critical customer energy demand not served	Total kVA of load interrupted for critical customers		
Avg (or %) of critical loads that experience an outage	Total kVA of load served to critical customers		
Time to recovery		Critical customer interruption duration	
Cost of recovery		Critical customer energy demand not served	
Loss of utility revenue	Outage cost for utility ($)	Cost of grid damages (e.g., repair or replace lines, transformers)	Total cost of equipment repair
Avoided outage cost	Total kVA of interrupted load avoided		
Cost per outage		Critical services without power	Number of critical services without power
	Critical services without power after backup fails	Total number of critical services with backup power	
	Loss of assets and perishables	Duration of backup power for critical services	
	Business interruption costs	Avg business losses per day (other than utility)	
	Impact on GMP or GRP	Total number of key production facilities w/o power	
	Key production facilities w/o power	How is this different from total KVA interrupted for critical customers?	
	Key military facilities w/o power	Total number of military facilities w/o power (same comment as above)	

Emerging

Direct impacts
- Customer services

Indirect impacts
- Community services

Emerging

Community services

Direct impacts
- Customer services

Emerging

Direct impacts
- Customer services
Differentiation between Reliability and Resilience events

Reliability
Ability to provide electric services under \textit{normal} operating conditions (\textit{blue sky})

Resilience
Ability to operate in full or reduced form during \textit{abnormal} operating conditions (\textit{black sky})

valuation differences between reliability and resilience improvements

\textbf{Blue sky} threat conditions
- Outages: usually ≤ 24 hours
- Statistics of failure and outage duration known (SAIDI, SAIFI)
- Consequence:
 - outage cost for all customers

\textbf{Black sky} threat conditions
- Outages: usually > 24 hours
- Statistics of failure and outage duration unknown (SAIDI, SAIFI)
- Consequence:
 - outage cost for all customers
 - Loss of community services
Differentiation between Resilience and Reliability

Metrics: Reliability

<table>
<thead>
<tr>
<th></th>
<th>Customer’s perspective</th>
<th>Utility’s perspective</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAIDI, SAIFI</td>
<td>Outage cost by customer</td>
<td>Lost revenue</td>
</tr>
<tr>
<td>CAIDI, CAIFI</td>
<td>Restoration cost</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LBNL’s ICE calculator
Valid for reliability events
Up to 24 hours

Metrics: Resilience

<table>
<thead>
<tr>
<th></th>
<th>Customer’s perspective</th>
<th>Utility’s perspective</th>
<th>Community’s perspective</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAIDI, SAIFI</td>
<td>Outage cost by customer</td>
<td>Lost revenue</td>
<td>Disruption of critical community services</td>
</tr>
<tr>
<td>CAIDI, CAIFI</td>
<td>Restoration cost</td>
<td></td>
<td>Impacts of Economic disruptions on Gross Regional Product</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td>Large reconstruction cost</td>
</tr>
</tbody>
</table>

- Direct impacts/consequence: Interruption cost. No data exist for multi-day interruptions. Notionally, damage costs increase more than linearly over time
- Indirect/induced impacts:
 - community disruptions (impact safety, health and wellbeing)
 - Economic disruption costs: percolates through local/regional economy
Methodology and Data Requirements for Determining Value of Resilience vs. Reliability

Resilience value

- **Difference**
 - Black-versus blue sky threats
 - For long-term outages we estimate LOST COMMUNITY SERVICE

Reliability value

- **Difference**
 - Black-versus blue sky threats
 - For long-term outages we estimate LOST COMMUNITY SERVICE

Delta

- Outage duration by customers

Valuation

- Value of lost load
- Value of lost community service

Benefit/cost estimate

Cost of equipment
Two Approaches toward Developing Resilience Metrics

➤ **Approach 1: Consequence-based**
- Addresses the consequences of one or multiple threats to an asset or infrastructure
- **Applications**: Assess consequences (direct and indirect) of threats. And used for assessing mitigation strategies to explore change in consequences. This approach is usually associated with projections and modeling (leading indicators)
- **Purpose**: Prioritizing investments for infrastructure hardening and mitigation strategies.

➤ **Approach 2: Attribute-based**
- Addresses the survivability posture of an asset or infrastructure to a threat or the ability to recover from a threat; predicated on sets of attributes that describe level of
 - Preparedness
 - Ability to resist and absorb
 - Ability to respond, adapt, and recover
- **Applications**: Requires a detailed survey instrument to collect resilience attribute characteristics and an elicitation process to define their contribution to the overall resilience
- **Purpose**:
 - Used for monitoring progress on the resilience posture
 - Enables comparability to peers and any other cohorts

➤ **Synergies between Approach 1 + 2:**
- Attribute-based approach can be used for screening to identify grid components that could be modified to enhance resilience
- Consequence-based approach can be used to analyze investment alternatives
- Will be applied to a New Orleans case study
Resilient Distribution Systems
Demonstration with City of Cordova, AK

► Project Name
 ■ Resilient Alaskan Distribution System Improvements using Automation, Network Analysis, Controls, and Energy Storage (RADIANCE) Field Validation

► Technology
 ■ Advanced metering/improvements to situational awareness
 ■ Upgrades to SCADA systems and/or advanced distribution controls
 ■ High-resolution fuel metering
 ■ High-resolution of water metering/penstocks
 ■ Integration hardware/software for grid-scale battery
 ■ Pumped hydro storage and solar assessments/modeling
 ■ Sectionalized hardware and controls for fault isolation
 ■ Information technology (IT) upgrades to enhance cybersecurity

► Field Validation
 ■ Multiple tests of device operations

► Use cases to be tested
 ■ Various configurations of microgrid operations under black sky conditions

► Values to be demonstrated
 ■ Primarily avoided economic impacts under black sky conditions

► Challenges
 ■ Projecting frequency of black sky events over the lifecycle of technologies
 ■ Field validation, inducing faults and demonstrating resilient behavior
How do you demonstrate Resilience?

Most technology solutions include redundant systems (hardening) and additional flexibility assets to reconfigure electric circuits.

Most Field-tests will focus primarily on low-intrusive device-level functionality. Then infer how system might behave under black-sky conditions using complex simulations.

Biggest challenge in valuation of resilience investments is the estimation of severity and frequency of black sky conditions. Assumptions are key driver for economic justification.
Exploring Investment Options on Consequences to Threats

Baseline

Weather Conditions (e.g., trajectory, wind speeds, etc.)

Effects of Weather (e.g., physical damage)

Model of Grid Ops

Histogram of Grid Consequences (e.g., Shed Load)

With Mitigation

Weather Conditions (e.g., trajectory, wind speeds, etc.)

Effects of Weather (e.g., physical damage)

Effects of Investment Options

Model of Grid Ops

Histogram of Grid Consequences (e.g., Shed Load)

Change in histogram represents resilience improvement
Principles of ATTRIBUTE-BASED Approach

Resilience index is based on 4 sub-indices

Level 1
- Preparedness
- Mitigation Measures
- Response Capabilities
- Recovery Mechanisms

Level 2
- Awareness
- Planning
- Mitigating Construction
- Utility Mitigation
- Onsite Capabilities
- Offsite Capabilities
- Resources Mitigation Measures
- IMCC Characteristics
- Restoration Agreements
- Recovery Time

IMCC: incident and management control center