
Summary of Marine and 
Hydrokinetic (MHK) Composites 

Testing at Montana State University 

David A Miller 
Daniel D Samborsky 

Mark T Stoffels 
Michael M Voth 

Jake D Nunemaker 
Kai J Newhouse 

Bernadette Hernandez-Sanchez 



 

 

 

 

 

What’s Presented today? 

• This collection of work details four areas of investigation within the
DOE/SNL/MSU marine hydrokinetic (MHK) energy materials effort.

– first section investigates the effect of moisture uptake into a continuous fiber
composite, considering the effect of an applied uniaxial tensile stress on diffusion rate and maximum mass

uptake. 

– second section investigates damage development and propagation in composite
materials due to moisture uptake. Included in these experimental results are mechanical strength and

in-situ acoustic emission results. 

– third section investigates the effect of moisture uptake on glass composites with
differing fiber angle and layup sequences. Both mechanical strength and in-situ acoustic emission

results are presented for unidirectional and symmetric cross-ply coupons.

– fourth section investigates the strength reduction and in-situ acoustic emission results
for a wide breadth of fiber reinforced composite materials before and after moisture
update. The evaluated coupons were provided from industrial suppliers and tested as potential materials for

MHK applications



 

 

Problem Definition 
• To cultivate a successful industry it

becomes pertinent to develop a
comprehensive understanding of
immersed MHK structures

• Well documented that composite materials
absorb moisture
– Significant mechanical and physical degradation

– Primarily unstressed systems investigated

• Structure will be subjected to stresses
– Becomes vital to understand what effects these

stresses have on the moisture absorption
process in composite material systems



  

Problem Definition 

• Seek to fully characterize the effects of tensile
stresses on the moisture diffusion characteristics of
Epoxy Glass composites

– To gain a clear understanding of the mechanisms at work
the effects of varying both fiber angle and magnitude of
applied stress will be investigated



Fickian Uptake Curve 

• Initially linear uptake region,
transitions to non-linear

• Asymptotically approaches
Maximum Percent Moisture
Content, M

– Pure Epoxy resin systems

M = 2.5 - 3.0%

• All Fickian materials will
demonstrate a curve of this
shape



 

Diffusivity 

• Diffusion coefficient D is a rate constant which
relates mass flux to the concentration gradient

– Units (length2/time)

– Defines the rate at which mass diffuses into a
concentration gradient

– Directly proportional to initial slope of the uptake curve

• For a homogenous thin plate,



   

Temperature and Pressure Effects 

• Ambient Temperature
– Diffusivity changes

– Maximum content unaltered

– Important to compare at same
ambient temperature

• Hydrostatic Pressure (where
10 MPa roughly equates to
1000m of sea depth)
– Diffusivity unaltered

– Maximum content unaltered

(x) Atmospheric
(☐)    15 MPa
()    35 MPa
(o) 70 MPa



Free Volume (𝜐𝑓) 

• The free volume is a fundamental quantity in polymeric
systems
– Small amount of unfilled volume at the end of a polymer chain

– Mathematically, the free volume is defined as the difference between
the measured volume and occupied volume

• Free volume theories are used as a
basis in describing molecular
movement (moisture diffusion e.g.) in
polymer systems.



 

Volume Strain of the Matrix 

• Recall, only the matrix absorbs moisture

– Therefore, only changes in the free volume of the matrix will
cause changes in moisture diffusion parameters.

𝜐𝑓𝜎 = 𝜐𝑓0 + 

∆𝑉Τ𝑉0 = ∆𝑉Τ𝑉0 𝑚𝜙𝑚 + ∆𝑉Τ𝑉0 𝑓𝜙𝑓𝑐 

Τ ∆𝑉 𝑉0 𝑚



 

Volume Strain of the Matrix 

• Through laminate plate theory the value for the
volumetric strain of the matrix is found…

– Function of applied tensile stress (σx), fiber angle (θ), fiber
volume fraction (φ), and elastic properties of the
constituents (E and ν for composite and fibers).



   

Changes in Diffusion Parameters 

Maximum Moisture Content 

𝜐𝑓𝜎 = 𝜐𝑓0 + ∆𝑉Τ𝑉0 𝑚 and 𝜐𝑓0
𝜌𝑚= M∞0 𝜌𝑤

𝜌𝑤
M∞𝜎 = 𝜐𝑓𝜎 𝜌𝑚

M∞𝜎 = 𝜐𝑓0 + Τ ∆𝑉 𝑉0 𝑚
𝜌𝑤
𝜌𝑚
𝜌𝑤

∆𝑉Τ𝑉0 M∞𝜎 = M∞0 + 𝑚 𝜌𝑚



   

Changes in Diffusion Parameters 

Diffusivity 

𝜐𝑓𝜎 = 𝜐𝑓0 + ∆𝑉Τ𝑉0 𝑚 and 𝜐𝑓0 = M∞0
𝜌𝑚

𝜌𝑤

𝐷𝜎 𝑎 1 1 
ln = − 
𝐷0 𝜙𝑚 𝜐𝑓0 𝜐𝑓𝜎

𝐷𝜎 𝑎 
ln = 
𝐷0 𝜙𝑚

Τ ∆𝑉 𝑉0 𝑚

𝜐𝑓0 𝜐𝑓0 + Τ ∆𝑉 𝑉0 𝑚



 

    

             

Recap 

• Began with moisture absorption of composite
materials, Springer (1976).

– , and D for unstressed composite plateD1,2,3, Dx,y,z

• Free volume theories to describe diffusion in polymers

– Free volume changes → Changes in diffusion parameters

𝜌𝑤– Neumann (1986): M∞ = 𝜐𝑓 𝜌𝑚

𝐷𝜎 1 1 
– Hurt (1980): ln = 𝑎 − 

𝐷0 𝜐𝑓0 𝜐𝑓𝜎



 
 

Continued… 
• Laminate Plate Theory to calculate volume change of

the only the polymer matrix

– 𝜐𝑓𝜎 = 𝜐𝑓0 +

𝜌𝑤– M∞𝜎 = M∞0 + ∆𝑉Τ𝑉0 𝑚 𝜌𝑚 

Τ ∆𝑉 𝑉0 𝑚

Τ ∆𝑉 𝑉0 𝑚 𝐷𝜎 𝑎 
– ln =

𝐷0 𝜙𝑚 ∆𝑉Τ𝑉0𝜐𝑓0 𝜐𝑓0+ 𝑚 

• All input parameters are know quantities:

– Stress (σx), fiber angle (θ), volume fraction (φ), densities of
fluid and matrix (ρ), and elastic properties of the 
constituents (E and ν for composite and fibers). 



        

           

Finite Element Analysis 

• ANSYS 13.0 – strong time dependent analysis tools

• Thermal-Moisture Diffusion Analogy as presented by
Wong and Koh (2002)

– Fourier Heat diffusion → Fickian Mass Diffusion
𝜕C 

𝜕t 
= D 

𝜕2𝐶 

𝜕𝑥2 + 
𝜕2𝐶 

𝜕𝑦2 + 
𝜕2𝐶 

𝜕𝑧2

𝜕T 

𝜕t 
= 

𝑘 

𝜌𝑐 

𝜕2𝑇 

𝜕𝑥2 + 
𝜕2𝑇 

𝜕𝑦2 + 
𝜕2𝑇 

𝜕𝑧2

Property Thermal Moisture 

Field Variable Temperature, T Saturation Ratio, w 

Density ρ (kg/m3) 1 

Conductivity k   (W/m °C) D × M∞ (mm2/hr) 

Specific Capacity c (J/kg °C) M∞









FEA continued 

• Diffusivity defined separately in each axes direction 
(Dx, Dy, and Dz) 

– In order to verify FE code and thermal-moisture analogy 
the effective system diffusivity D calculated was through 
reproduced uptake curves 



Experimental Procedures 

• Overview

• Manufacturing

• Sample Preparation

• Weight Gain Measurements



Experiment Overview 

• Goal is to experimentally validate proposed
model and finite element simulation by
immersing stressed unidirectional FRP
composite samples

– Varying both magnitude of applied tensile stress
and the fiber angle



 

Manufacturing 

• Momentive’s Epikote epoxy resin system

• Saertex U14EU920 series glass fiber stitched fabric.
By weight:

– 91% at 0-degree orientation

– 8% at 90-degree orientation

– 1% comprised of fabric stitching

• All samples were cut from a single unidirectional
fiber composite plate manufactured using Vacuum
Assisted Resin Transfer Molding (VARTM) Process

– 30 x 20 inch, two-ply thick, 0-degree



 

Sample Preparation 
• Sample size 4.5 x 0.6 inch

– Samples cut at desired fiber orientation

– One-inch tabs adhered at ends of samples

– Holes drilled for Stainless Steel restraining pins

• Stainless Steel compression springs used to apply
tensile stress
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 • All 45 and 90 degree samples loaded at 30 MPa
fractured prior to achieving full saturation

– Significant mechanical degradation

– Apparent crack propagation along fiber-matrix interface



 

   

Maximum Moisture Content 
σx M (%) 

 Percent Error (%) 

θ(deg) ϕf (MPa) Experimental ANSYS Model ANSYS Model 

0 0.9692 1.0652 1.0652 9.91 9.91 

0 0.52 18 0.9453 1.0703 1.0676 13.22 12.94 

30 0.9758 1.072 1.0718 9.86 9.84 

0 0.9466 1.0651 1.0652 12.52 12.53 

20 0.52 18 1.0235 1.0773 1.0776 5.26 5.29 

30 1.151 1.085 1.0852 -5.73 -5.72

0 0.9559 1.0652 1.0652 11.43 11.43 

45 0.52 18 1.0644 1.1031 1.1027 3.64 3.60 

30 1.2523** 1.1354 1.1349 -9.33 -9.37

0 1.0102 1.0652 1.0652 5.44 5.44 

90 0.52 18 1.1246 1.1363 1.1358 1.04 1.00 

30 1.4057** 1.1836 1.1829 -15.80 -15.85

** Sample fracture prior to achieving full saturation 

𝜌𝑤ANSYS and Model: M∞𝜎 = M∞0 + ∆𝑉Τ𝑉0 𝑚 𝜌𝑚 



 

Diffusivity Values 

• Experimental: Extracted directly from weight gain curves

• ANSYS: Defined D separately in coordinate direction (xyz),
using Springer formulations. The weight gain curves were
then reconstructed using…

This served to verify that the code was running properly 



 

Continued… 

• Model: Volume Strain Formulations

– Composite properties known from layup (σ , θ, φ, ρ, E, ν)x

• Allows calculation of unstressed D0 of composite
2 

ℎ ℎ 𝐷𝑥0 𝐷𝑦0
𝐷0 + + 1= 𝐷𝑧0 𝑙 𝑤 𝐷𝑧0 𝐷𝑧0

• Stressed diffusivity Dσ is then found…

𝐷𝜎 𝑎 
ln = 
𝐷0 𝜙𝑚

Τ ∆𝑉 𝑉0 𝑚

𝜐𝑓0 𝜐𝑓0 + Τ ∆𝑉 𝑉0 𝑚



Diffusivity 

σx D (mm2/hour) * 10 -2 Percent Error (%) 

θ(deg) ϕf (MPa) Experimental ANSYS Model ANSYS Model 

0 0.1073 0.1046 0.1076 -2.52 0.28 

0 0.52 18 0.1156 0.1118 0.1075 -3.29 -7.01

30 0.112 0.1132 0.1074 1.07 -4.11

0 0.125 0.1197 0.1134 -4.24 -9.28

20 0.52 18 0.1374 0.1296 0.1366 -5.68 -0.58

30 0.1813 0.1619 0.1559 -10.70 -14.01

0 0.1237 0.1187 0.1211 -4.04 -2.10

45 0.52 18 0.1444 0.1429 0.1482 -1.04 2.63

30 0.1911 0.1691 0.1743 -11.51 -8.79

0 0.1195 0.1151 0.1177 -3.68 -1.51

90 0.52 18 0.1705 0.1631 0.1699 -4.34 -0.35

30 0.2132 0.1977 0.1987 -7.27 -6.80



Observations 

• All 0-degree samples, regardless of tensile loading,
exhibit similar M and D values

• Magnitude at which the diffusion parameters change
increases with fiber angle (θ = 0° → θ = 90°)

– This is due to larger volume strain in the matrix at θ = 90°

• In general, the model over-estimates M values and
under-estimates D



Conclusions 

• The model successfully predicts maximum moisture
content and diffusivity values for stressed
unidirectional composite samples.

• The model uses commonly known composite input
parameters (σx, θ, φ, ρ, E, ν) in addition to neat resin
properties D and M

• ANSYS FEA code has shown very good agreement
with experimental data, validates thermal-moisture
diffusion analogy



 CHARACTERIZATION OF THE EFFECTS OF HYGROTHERMAL-
AGING ON MECHANICAL PERFORMANCE AND DAMAGE 

PROGRESSION OF FIBERGLASS EPOXY COMPOSITE 



 

Hygrothermal Aging: 
Degradation Mechanisms 

Physical degradation: 
• Moisture induced swelling alters the internal stress

state of the composite causing damage or altering the
micromechanical damage behavior

Chemical degradation 
• Water alters the microstructure of the polymer or

interface
– Plasticization
– Hydrolysis
– Secondary crosslinking (epoxy)

34 
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Acoustic Emission (AE) 

AE monitoring 

– As composite materials are loaded, damage occurs within the
material.

– Each damage event causes a  release of strain energy resulting in a
stress wave

– Piezoelectric transducers mounted in various locations on the surface
of the test specimen record time-amplitude for these stress waves

– The AE DAQ records a waveform for every measurable damage event
that occurs (can be thousands).

1 https://www.nde ed.org 

35 
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Waveform Parameters 

Basic parameters are extracted from  an AE event waveforms and 
serve as descriptors used in AE analysis 

• Energy

• FFT-Peak-Frequency

• Max Amplitude

• FFT-Centroid-Frequency

• Duration

• Rise-time

• etc.

36 



AE Analysis Techniques 

37 



Single Parameter Analysis 
Single parameters may 
be used to characterize 
damage behavior in the 
composite. 

• Number of events

• Signal energy

• Frequency: Damage
Mechanisms

– Frequencies correlate
to damage
mechanisms

38 



 

 

AE and Hygrothermal Aging 
AE monitoring is NDE technique that could aid in understanding 
hygrothermal affects on damage behavior. 

• AE is an indirect measure of damage

• How is AE response affected by hygrothermal aging?
– Changes in damage behavior

– Changes in Lamb wave behavior

39 



 

Methods and Results Outline 

• Matrix Characterization
– Thermal analysis
– Diffusion and swelling

• Composite Characterization
– Diffusion and swelling
– Hygrothermal damage evaluation
– Mechanical testing and characterization
– Damage progression characterization: constitutive

stress-strain response and AE monitoring

• Wave Propagation and Attenuation
– Guided ultra-sonic testing

40 



 

 

Matrix Characterization: Thermal Analysis 
Methods 

DSC Test matrix 

Sample Type Conditioning 
Number of 
Samples 

Tested bulk 
moisture 
content (%) 

Control none 5 0.0% 

Aged 
312 hrs. 50°C distilled 
water 

5 4.0% 

Desorb 
1) 312 hrs. 50°C distilled
water
2) dried 620 hrs. 50°C

5 0.1% 

41 



 

Matrix Characterization: Thermal 
Analysis 

• T was reduced fromg 

hygrothermal aging by 17°C
which suggests that
plasticization is present

• Nearly all moisture was
expelled during the
drying/desorbing process

• Tg is fully recovered after
desorption/drying

86.9 86.9 90.9 

42 



Matrix Characterization: Diffusion and 
Swelling Results 

• Fickian behavior

– Linear with 𝑡

• Moisture uptake
5.7%+ and
increasing
– Typical uptake for

epoxy: 2-7%

43 



Matrix Characterization: Diffusion and 
Swelling Results 

• Swelling strains were
significant ~2%𝜀 at
5.7% bulk moisture
uptake

• Matrix Swelling
coefficient

𝐶 
– → 𝛽𝑚 = 

𝜀

– 𝛽𝑚 = 0.35 (%𝜀 / %m)

44 



Matrix Characterization: Diffusion and 
Swelling Results 

Swelling strains resulted in damage 

45 



Composite Characterization: Moisture 
Uptake Results 

• Moisture
uptake 0.9%
by mass

• In situ matrix
absorption
(ROM): 2.7%

46 
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Composite Characterization: Moisture 
Desorption Results 

1 Dan Samborsky: Summary of Vectorply E LT 3800 Fabric Properties 

47 



 Composite Characterization: 
Hygrothermal Damage 

48 



 Composite Characterization: 
Hygrothermal Damage 

49 



 Composite Characterization: 
Hygrothermal Damage 

50 



Composite Characterization: 
Mechanical Properties Results- Strength 

Unidirectional 
– 40% strength

reduction

Cross-ply 
– 54% strength

reduction

Temperature effects 
– Strength not

affected

Reversibility 
– Strength did not

recover with
desorbing/drying

51 



 Composite Characterization: 
Mechanical Properties Results 

Ultimate Load – per unit width 

52 



Composite Characterization: Mechanical 
Properties Results-Modulus 

53 



Composite Characterization: Stress-
Strain Results 

Reduced  bi-linear 
“knee” in conditioned 
samples 

• Marks the onset of
transverse failures

• Initiation vs growth

54 



Composite Characterization: Stress-
Strain Results 

55 



Composite Characterization: Stress-
Strain Results 

56 



 

Composite Characterization: Failed 
Coupon Inspection 

• [90]2 : change in crack density at failure

• Laminates containing 0° plies: localized vs
global failure

57 



Composite Characterization: Failed 
Coupon Inspection 

58 
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Composite Characterization: Acoustic 
Emission Results 

Damage 
Mechanism 

FFT Peak 
Frequency Range 

(kHz) 
Bin 
1 

Matrix <120 

Bin 
2 

Fiber/matrix 
interphase 

120-300

Bin 
3 

Fiber >300

Example of AE energy and 
frequency results from a static 
tensile test 

• Empirical validation of
frequency-damage
mechanism correlation is
an ongoing work

aJ = 10^-18J 

59 



Composite Characterization: Acoustic 
Emission Results 

Quantify damage onset: Onset 
of AE activity 

• Damage onset was 
reduced with 
hygrothermal conditioning 

• [90]2 correlates to damage 
onset in stress-strain 
response 

• Damage onset was 
obtained for [0]2 laminates 

60 



 

Conclusions 

Change in Mechanical Properties 

• Strength and damage tolerance was significantly
reduced with hygrothermal aging: 40-54% reduction
in strength.

• Variation in strength reductions between strength of
unidirectional and cross-ply laminates suggests inter-

ply behavior is affected by hygrothermal aging.

61 



 

  

Conclusions Continued 

Damage Behavior 

• Reduced damage onset with hygrothermal aging

• Reduced damage tolerance

Hygrothermal affects on AE

• Changes in AE behavior relate to changes in damage
behavior, not changes in wave propagation behavior.

62 



Effects of Moisture Absorption on Static 
Strength and Acoustic Emission Signatures of 

Off-Axis Fiberglass-Epoxy Composites 



 

Off-Axis Test Matrix 

Layup Fabric # of tests Conditioning 

[15]2 E-LT 3900 6 3 dry, 3 sat. 

[30]2 E-LT 3900 6 3 dry, 3 sat. 

[45]2 E-LT 3900 6 3 dry, 3 sat. 

[±15] E-LT 3900 6 3 dry, 3 sat. 

[±30] E-LT 3900 6 3 dry, 3 sat. 

[±45] E-LT 3900 6 3 dry, 3 sat. 

Notes: 

• 0.05”/min load rate



 

 

Partial Saturation Test Matrix 
Layup Fabric # of tests Conditioning 

[0/90]s E-LT 3800 5 0.0% Moisture 

[0/90]s E-LT 3800 5 0.2% Moisture 

[0/90]s E-LT 3800 5 0.51% Moisture 

[0/90]s E-LT 3800 5 0.71% Moisture 

[0/90]s E-LT 3800 5 Fully Saturated1

[90/0]s E-LT 3800 5 0.0% Moisture 

[90/0]s E-LT 3800 5 0.2% Moisture 

[90/0]s E-LT 3800 5 0.46% Moisture 

[90/0]s E-LT 3800 5 0.67% Moisture 

[90/0]s E-LT 3800 5 Fully Saturated1

Notes: 

• 0.06”/min load rate

• 1 Still undergoing conditioning, results not
in presentation



Visible Absorption Effects 

• White striations
visible after
absorption

– Along fiber angles

– Consistent throughout
all laminates

• Microscopic imaging
inconclusive
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Model Parameters 

• Laminate plate
theory is usually
used for true
unidirectional plies

– The addition of
backing strands
and stitching
complicates
analysis



Results 

PARTIAL SATURATION 
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Conclusions 

• Off-axis strength reductions similar to
unidirectional

• Max stress failure criterion highlights
degradation in shear strength

– Has to be tuned to dry results

• Acoustic emission analysis indicates a change
in damage progression



 

 
 

Conclusions cont. 

• Dry samples

– AE analysis shows interfacial damage prior to
matrix cracking

• Saturated samples

– Change in progression indicates matrix cracking
beginning prior to interface damage

• Matrix shear strength

• Matrix fracture toughness



Conclusions 

• [0/90]s degraded faster initially than [90/0]s

– Verifies extension of Fickian diffusion

• Acoustic emission analysis inconclusive

– Individual layups had different acoustic signatures

– Comparison of two different layups yet to be
successful



An Acoustic Emission and 
Hygrothermal Aging Study of Fiber 

Reinforced Polymer Composites 



AE System Implementation 

M. M. Voth, 2018.





 

 

MHK Study 

• Material Characterization for MHK
applications

– U.S. DOE Water Power Technologies Office

• MHK Database

– Sandia National Laboratory & MSU

• Industry supplied material systems
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MHK Material Summary 
Label Resin Fabric Layup 

J1 

Eastman Copolyester 5011, 

PETG Vectorply E-QX 4800 [0/45/90/-45]4 

J2 Derakane 470 HT-400 VE Vectorply E-QX 4800 [0/45/90/-45]4 

J3 Applied Poleramic SC18 Vectorply E-QX 4800 [0/45/90/-45]4 

J4 Derakane 470 HT-400 VE OCV WR27TW [(0/90/)(45/-45)]4 

J5 Applied Poleramic SC18 OCV WR27TW [(0/90/)(45/-45)]4 

J6 Applied Poleramic SC18 TPI 4582 (2x2 twill), T700 12K 670 gsm [(0/90/)(45/-45)]4 

J7 Applied Poleramic SC18​

Vectorply C-QX 2300 778 gsm, T700 

12K Quad [(0/45/90/-45]4 

J8 Derakane 470 HT-400 VE TPI 4582 (2x2 twill), T700 12K 670 gsm [(0/45/90/-45]4 

Label Resin Fabric (hybrids) Layup 

CE1​ Pro-set INF 114/211 Zoltek UD600 [(+45/-45)g/0c]s 

CE2​ Pro-set INF 114/211 Vectorply CLA 1812 [(+45/-45)g/0c]s​

CE3​ Hexion RIMR 035c/RIMH 0366 Zoltek UD600 [(+45/-45)g/0c]s 

CE4​ Hexion RIMR 035c/RIMH 0366 Vectorply CLA 1812 [(+45/-45)g/0c]s 

CE5​

Crestapol 1250PUL urethane 

Acrylate E-BX 1700, CLA 1812, Veil [(+45/-45)g/0c]s 

CE6​ AME 6001 VE +1.5% MCP ELT-2900, E-BX 1700, ELT-2900 [0/+45/-45/0]s 

Label Resin Fabric Layup 

N1​ Elium JM 086 [0b]2s 



MHK Material Summary Cont. 

Label Resin Fabric Layup 

P1 PP E-glass w/AMB [0/90]3 

P4 PA6 E-glass [0/90]3 

P5 PA11 E-glass [0/90]3 

P6 PET E-glass [0/90]3 

P9 PETG E-glass [0/90]3 

P11 HDPE E-glass [0/90]3 

P13 PP E-glass [0/90]3 



  GLASS IN THERMOPLASTIC 
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  GLASS IN THERMOSET 
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    CARBON & CARBON-GLASS HYBRID SYSTEMS 
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static axial tension 
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A B C D E F 

Group Fiber Matrix Layup Type 

A Glass Thermoset Quasi-Isotropic 

Group Fiber Matrix Type Layup Type 

D Glass Vinyl ester [0/45/-45/0] 

B Carbon Thermoset Quasi-isotropic 

C Hybrid Thermoset [45/-45/0]s 

E Glass Elium [0b]s 

F Glass Thermoplastic [0/90]n 



 Group Fiber Matrix Layup Type 

A Glass Thermoset Quasi-Isotropic 

Group Fiber Matrix Type Layup Type 

D Glass Vinyl ester [0/45/-45/0] 

B Carbon Thermoset Quasi-isotropic 

C Hybrid Thermoset [45/-45/0]s 

A B C D E F 

E Glass Elium [0b]s 

F Glass Thermoplastic [0/90]n 



 

A B C D E F 

Group Fiber Matrix Layup Type 

A Glass Thermoset Quasi-Isotropic 

Group Fiber Matrix Type Layup Type 

D Glass Vinyl ester [0/45/-45/0] 

B Carbon Thermoset Quasi-isotropic 

C Hybrid Thermoset [45/-45/0]s 

E Glass Elium [0b]s 

F Glass Thermoplastic [0/90]n 



Conclusions 

• Moisture Uptake

– Thermoplastics have higher diffusion constants
and free volumes than thermosets

– Carbon Laminates absorb more moisture than
glass laminates

• Normalized by volume fraction comparing matrix

– Thermoplastic laminates are observed to degrade
(lose mass) in heated SSW after ~1000 hours
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Infused Glass Prepreg Glass Prepreg Carbon 



Infused Glass Prepreg Glass Prepreg Carbon 



Infused Glass Prepreg Glass Prepreg Carbon 



  

 

Conclusions 

• Mechanical

– Moduli are generally unaffected by moisture
uptake

– Strength and failure strain generally decrease with
moisture

• Some exceptions

– Low quality laminates are affected less



Summary 

• MSU and Sandia have performed many tests
to characterize and quantify the effects of
moisture on composite materials

• Broad range of tests and materials to
investigate amount and type of damage

• Still many unanswered questions.
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