Summary of Marine and Hydrokinetic (MHK) Composites Testing at Montana State University

David A Miller Daniel D Samborsky Mark T Stoffels Michael M Voth Jake D Nunemaker Kai J Newhouse Bernadette Hernandez-Sanchez

What's Presented today?

- This collection of work details four areas of investigation within the DOE/SNL/MSU marine hydrokinetic (MHK) energy materials effort.
 - first section investigates the <u>effect of moisture uptake into a continuous fiber</u>
 <u>composite</u>, considering the effect of an applied uniaxial tensile stress on diffusion rate and maximum mass uptake.
 - second section investigates <u>damage development and propagation in composite</u> <u>materials due to moisture uptake</u>. Included in these experimental results are mechanical strength and in-situ acoustic emission results.
 - third section investigates the <u>effect of moisture uptake on glass composites with</u> <u>differing fiber angle and layup sequences</u>. Both mechanical strength and in-situ acoustic emission results are presented for unidirectional and symmetric cross-ply coupons.
 - fourth section investigates <u>the strength reduction and in-situ acoustic emission results</u> for a wide breadth of fiber reinforced composite materials before and after moisture <u>update</u>. The evaluated coupons were provided from industrial suppliers and tested as potential materials for MHK applications

Problem Definition

- To cultivate a successful industry it becomes pertinent to develop a comprehensive understanding of immersed MHK structures
- Well documented that composite materials absorb moisture
 - Significant mechanical and physical degradation
 - Primarily unstressed systems investigated
- Structure will be subjected to stresses
 - Becomes vital to understand what effects these stresses have on the moisture absorption process in composite material systems

Problem Definition

- Seek to fully characterize the effects of tensile stresses on the moisture diffusion characteristics of Epoxy Glass composites
 - To gain a clear understanding of the mechanisms at work the effects of varying both fiber angle and magnitude of applied stress will be investigated

Fickian Uptake Curve

- Initially linear uptake region, transitions to non-linear
- Asymptotically approaches Maximum Percent Moisture Content, M_∞
 - Pure Epoxy resin systems $M_{\infty} = 2.5 - 3.0\%$
- All Fickian materials will demonstrate a curve of this shape

Diffusivity

- Diffusion coefficient *D* is a rate constant which relates mass flux to the concentration gradient
 - Units (length²/time)
 - Defines the rate at which mass diffuses into a concentration gradient
 - Directly proportional to initial slope of the uptake curve
- For a homogenous thin plate,

$$\mathbf{D} = \pi \left(\frac{h}{4M_{\infty}}\right)^2 \left(\frac{M_2 - M_1}{\sqrt{t_2} - \sqrt{t_1}}\right)^2$$

Temperature and Pressure Effects

- Ambient Temperature
 - Diffusivity changes
 - Maximum content unaltered
 - Important to compare at same ambient temperature
- Hydrostatic Pressure (where 10 MPa roughly equates to 1000m of sea depth)
 - Diffusivity unaltered
 - Maximum content unaltered

Free Volume (v_f)

- The free volume is a fundamental quantity in polymeric systems
 - Small amount of unfilled volume at the end of a polymer chain
 - Mathematically, the free volume is defined as the difference between the measured volume and occupied volume

 Free volume theories are used as a basis in describing molecular movement (moisture diffusion e.g.) in polymer systems.

Volume Strain of the Matrix

- Recall, only the matrix absorbs moisture
 - Therefore, only changes in the free volume of the matrix will cause changes in moisture diffusion parameters.

$$v_{f\sigma} = v_{f0} + (\Delta V/V_0)_m$$

Volume Strain of the Matrix

- Through laminate plate theory the value for the volumetric strain of the matrix is found...
 - Function of applied tensile stress (σ_x), fiber angle (θ), fiber volume fraction (φ), and elastic properties of the constituents (E and v for composite and fibers).

$$\begin{aligned} (\Delta V/V_0)_m \phi_m &= \sigma_x \left\{ cos^2 \theta \left[\left(\frac{1 - 2\nu_{12c}}{E_{1c}} \right) - \phi_f \left(\frac{1 - 2\nu_{12f}}{E_{1c}} \right) \right] \\ &+ sin^2 \theta \left[\left(\frac{1}{E_{2c}} - \frac{\nu_{12c}}{E_{1c}} - \frac{\nu_{23c}}{E_{2c}} \right) - \phi_f \left(\frac{1}{E_{2f}} - \frac{\nu_{12f}}{E_{1f}} - \frac{\nu_{23f}}{E_{2f}} \right) \right] \right\} \end{aligned}$$

Changes in Diffusion Parameters

Maximum Moisture Content

 $v_{f\sigma} = v_{f0} + (\Delta V/V_0)_m$ and $v_{f0} = M_{\infty 0} \frac{\rho_m}{\rho_w}$ $M_{\infty\sigma} = v_{f\sigma} \frac{\rho_w}{\rho_m}$ $M_{\infty\sigma} = \left[v_{f0} + (\Delta V / V_0)_m \right] \frac{\rho_w}{\rho_m}$ $M_{\infty\sigma} = M_{\infty0} + (\Delta V/V_0)_m \frac{\rho_w}{\rho_m}$

Changes in Diffusion Parameters Diffusivity $v_{f\sigma} = v_{f0} + (\Delta V/V_0)_m$ and $v_{f0} = M_{\infty 0} \frac{\rho_m}{\rho_m}$ $\ln \frac{D_{\sigma}}{D_{0}} = \frac{a}{\phi_{m}} \left(\frac{1}{v_{f0}} - \frac{1}{v_{f\sigma}} \right)$ $\ln \frac{D_{\sigma}}{D_0} = \frac{a}{\phi_m} \frac{(\Delta V/V_0)_m}{v_{f0} [v_{f0} + (\Delta V/V_0)_m]}$

Recap

• Began with moisture absorption of composite materials, Springer (1976).

 $- D_{1,2,3}$, $D_{x,y,z}$, and D for unstressed composite plate

- Free volume theories to describe diffusion in polymers
 - Free volume changes \rightarrow Changes in diffusion parameters

- Neumann (1986):
$$M_{\infty} = v_f \frac{\rho_w}{\rho_m}$$

- Hurt (1980): $\ln \frac{D_{\sigma}}{D_0} = a \left(\frac{1}{v_{f0}} - \frac{1}{v_{f\sigma}}\right)$

Continued...

• Laminate Plate Theory to calculate volume change of the only the polymer matrix

$$-v_{f\sigma} = v_{f0} + (\Delta V/V_0)_m$$

$$- M_{\infty\sigma} = M_{\infty0} + (\Delta V/V_0)_m \frac{\rho_w}{\rho_m}$$

$$-\ln\frac{D_{\sigma}}{D_{0}} = \frac{a}{\phi_{m}} \frac{(\Delta V/V_{0})_{m}}{v_{f0}[v_{f0} + (\Delta V/V_{0})_{m}]}$$

- All input parameters are know quantities:
 - Stress (σ_x), fiber angle (θ), volume fraction (φ), densities of fluid and matrix (ρ), and elastic properties of the constituents (E and v for composite and fibers).

Finite Element Analysis

- ANSYS 13.0 strong time dependent analysis tools
- Thermal-Moisture Diffusion Analogy as presented by Wong and Koh (2002)
 - Fourier Heat diffusion $\leftarrow \rightarrow$ Fickian Mass Diffusion

$$\frac{\partial C}{\partial t} = D\left(\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2} + \frac{\partial^2 C}{\partial z^2}\right)$$

$$\frac{\partial \mathbf{T}}{\partial \mathbf{t}} = \frac{k}{\rho c} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right)$$

Property	Thermal		Moisture	
Field Variable	Temperature, T		Saturation Ratio, w	
Density	ρ	(kg/m³)	1	
Conductivity	k	(W/m °C)	$D \times M_{\infty}$ (mm ² /hr)	
Specific Capacity	С	(J/kg °C)	M _∞	ntains

් Minds

FEA continued

- Diffusivity defined separately in each axes direction
 (D_x, D_y, and D_z)
 - In order to verify FE code and thermal-moisture analogy the effective system diffusivity *D* calculated was through reproduced uptake curves

$$M(t) = \left(\frac{\Sigma Temperature \ at \ each \ node}{Total \ number \ of \ nodes}\right) M_{\infty}$$

$$\mathbf{D} = \pi \left(\frac{h}{4M_{\infty}}\right)^2 \left(\frac{M_2 - M_1}{\sqrt{t_2} - \sqrt{t_1}}\right)^2$$

Experimental Procedures

- Overview
- Manufacturing
- Sample Preparation
- Weight Gain Measurements

Experiment Overview

- Goal is to experimentally validate proposed model and finite element simulation by immersing stressed unidirectional FRP composite samples
 - Varying both magnitude of applied tensile stress and the fiber angle

Manufacturing

- Momentive's Epikote epoxy resin system
- Saertex U14EU920 series glass fiber stitched fabric.
 By weight:
 - 91% at 0-degree orientation
 - 8% at 90-degree orientation
 - 1% comprised of fabric stitching

- All samples were cut from a single unidirectional fiber composite plate manufactured using Vacuum Assisted Resin Transfer Molding (VARTM) Process
 - 30 x 20 inch, two-ply thick, 0-degree

Sample Preparation

- Sample size 4.5 x 0.6 inch
 - Samples cut at desired fiber orientation
 - One-inch tabs adhered at ends of samples
 - Holes drilled for Stainless Steel restraining pins
- Stainless Steel compression springs used to apply tensile stress

MONTANA STATE UNIVERSIT

MONTANA STATE UNIVERSITY

- All 45 and 90 degree samples loaded at 30 MPa fractured prior to achieving full saturation
 - Significant mechanical degradation
 - Apparent crack propagation along fiber-matrix interface

Maximum Moisture Content

	σ _x			M _∞ (%)			Percent Error (%)	
(deg)	ϕ_{f}	(MPa)	Experimental	ANSYS	Model	ANSYS	Model	
0	0.52	0	0.9692	1.0652	1.0652	9.91	9.91	
		18	0.9453	1.0703	1.0676	13.22	12.94	
		30	0.9758	1.072	1.0718	9.86	9.84	
20	0.52	0	0.9466	1.0651	1.0652	12.52	12.53	
		18	1.0235	1.0773	1.0776	5.26	5.29	
		30	1.151	1.085	1.0852	-5.73	-5.72	
45	0.52	0	0.9559	1.0652	1.0652	11.43	11.43	
		18	1.0644	1.1031	1.1027	3.64	3.60	
		30	1.2523**	1.1354	1.1349	-9.33	-9.37	
90	0.52	0	1.0102	1.0652	1.0652	5.44	5.44	
		18	1.1246	1.1363	1.1358	1.04	1.00	
		30	1.4057**	1.1836	1.1829	-15.80	-15.85	

** Sample fracture prior to achieving full saturation

ANSYS and Model:
$$M_{\infty\sigma} = M_{\infty0} + (\Delta V/V_0)_m \frac{\rho_w}{\rho_m}$$

Diffusivity Values

• <u>Experimental</u>: Extracted directly from weight gain curves

$$\mathsf{D} = \pi \left(\frac{h}{4M_{\infty}}\right)^2 \left(\frac{M_2 - M_1}{\sqrt{t_2} - \sqrt{t_1}}\right)^2$$

• <u>ANSYS</u>: Defined *D* separately in coordinate direction (xyz), using Springer formulations. The weight gain curves were then reconstructed using...

$$M(t) = \left(\frac{\Sigma Temperature \ at \ each \ node}{Total \ number \ of \ nodes}\right) M_{\infty}$$

This served to verify that the code was running properly

Continued...

- <u>Model</u>: Volume Strain Formulations
 - Composite properties known from layup (σ_x , θ , ϕ , ρ , E, ν)
- Allows calculation of unstressed D₀ of composite

$$D_{0} = D_{z0} \left(\frac{h}{l} \sqrt{\frac{D_{x0}}{D_{z0}}} + \frac{h}{w} \sqrt{\frac{D_{y0}}{D_{z0}}} + 1 \right)^{2}$$

• Stressed diffusivity D_{σ} is then found...

$$\ln \frac{D_{\sigma}}{D_0} = \frac{a}{\phi_m} \frac{(\Delta V/V_0)_m}{v_{f0} [v_{f0} + (\Delta V/V_0)_m]}$$

Diffusivity

		σ _x	D (mm ² /hour) * 10 ⁻²			Percent Error (%)	
(deg)	ϕ_{f}	(MPa)	Experimental	ANSYS	Model	ANSYS	Model
0	0.52	0	0.1073	0.1046	0.1076	-2.52	0.28
		18	0.1156	0.1118	0.1075	-3.29	-7.01
		30	0.112	0.1132	0.1074	1.07	-4.11
20	0.52	0	0.125	0.1197	0.1134	-4.24	-9.28
		18	0.1374	0.1296	0.1366	-5.68	-0.58
		30	0.1813	0.1619	0.1559	-10.70	-14.01
45	0.52	0	0.1237	0.1187	0.1211	-4.04	-2.10
		18	0.1444	0.1429	0.1482	-1.04	2.63
		30	0.1911	0.1691	0.1743	-11.51	-8.79
90	0.52	0	0.1195	0.1151	0.1177	-3.68	-1.51
		18	0.1705	0.1631	0.1699	-4.34	-0.35
		30	0.2132	0.1977	0.1987	-7.27	-6.80

Observations

- All 0-degree samples, regardless of tensile loading, exhibit similar M_{∞} and D values
- Magnitude at which the diffusion parameters change increases with fiber angle ($\theta = 0^{\circ} \rightarrow \theta = 90^{\circ}$)

– This is due to larger volume strain in the matrix at θ = 90°

 In general, the model over-estimates M_∞ values and under-estimates D

Conclusions

- The model successfully predicts maximum moisture content and diffusivity values for stressed unidirectional composite samples.
- The model uses commonly known composite input parameters (σ_x , θ , ϕ , ρ , E, v) in addition to neat resin properties *D* and M_{∞}
- ANSYS FEA code has shown very good agreement with experimental data, validates thermal-moisture diffusion analogy

CHARACTERIZATION OF THE EFFECTS OF HYGROTHERMAL-AGING ON MECHANICAL PERFORMANCE AND DAMAGE PROGRESSION OF FIBERGLASS EPOXY COMPOSITE

Hygrothermal Aging: Degradation Mechanisms

Physical degradation:

 Moisture induced swelling alters the internal stress state of the composite causing damage or altering the micromechanical damage behavior

Chemical degradation

- Water alters the microstructure of the polymer or interface
 - Plasticization
 - Hydrolysis
 - Secondary crosslinking (epoxy)

Acoustic Emission (AE)

AE monitoring

- As composite materials are loaded, damage occurs within the material.
- Each damage event causes a release of strain energy resulting in a stress wave
- Piezoelectric transducers mounted in various locations on the surface of the test specimen record time-amplitude for these stress waves
- The AE DAQ records a waveform for *every* measurable damage event that occurs (can be thousands).

Waveform Parameters

Basic parameters are extracted from an AE event waveforms and serve as descriptors used in AE analysis

- Energy
- FFT-Peak-Frequency
- Max Amplitude
- FFT-Centroid-Frequency
- Duration
- Rise-time
- etc.

AE Analysis Techniques

Single Parameter Analysis

Single parameters may be used to characterize damage behavior in the composite.

- Number of events
- Signal energy
- Frequency: Damage Mechanisms
 - Frequencies correlate to damage mechanisms

AE and Hygrothermal Aging

AE monitoring is NDE technique that could aid in understanding hygrothermal affects on damage behavior.

- AE is an indirect measure of damage
- How is AE response affected by hygrothermal aging?
 - Changes in damage behavior
 - Changes in Lamb wave behavior

Methods and Results Outline

- Matrix Characterization
 - Thermal analysis
 - Diffusion and swelling
- Composite Characterization
 - Diffusion and swelling
 - Hygrothermal damage evaluation
 - Mechanical testing and characterization
 - Damage progression characterization: constitutive stress-strain response and AE monitoring
- Wave Propagation and Attenuation
 - Guided ultra-sonic testing

Matrix Characterization: Thermal Analysis Methods

DSC Test matrix

Sample Type	Conditioning	Number of Samples	Tested bulk moisture content (%)
Control	none	5	0.0%
Aged	312 hrs. 50°C distilled water	5	4.0%
Desorb	1) 312 hrs. 50°C distilled water 2) dried 620 hrs. 50°C	5	0.1%

Matrix Characterization: Thermal Analysis

- T_g was reduced from hygrothermal aging by 17°C which suggests that plasticization is present
- Nearly all moisture was expelled during the drying/desorbing process
- T_g is fully recovered after desorption/drying

Matrix Characterization: Diffusion and Swelling Results

- Fickian behavior
 - Linear with \sqrt{t}
- Moisture uptake
 5.7%+ and
 increasing
 - Typical uptake for epoxy: 2-7%

Matrix Characterization: Diffusion and Swelling Results

- Swelling strains were significant ~2% e at 5.7% bulk moisture uptake
- Matrix Swelling coefficient

$$- \rightarrow \frac{\varepsilon}{\varepsilon}$$

- $\beta_m = 0.35 (\% \varepsilon / \% m)$

Matrix Characterization: Diffusion and Swelling Results

Swelling strains resulted in damage

Composite Characterization: Moisture Uptake Results

- Moisture uptake 0.9% by mass
- In situ matrix absorption (ROM): 2.7%

Composite Characterization: Moisture Desorption Results

Dan Samborsky. Summary of vectorphy E LI 3000 Fabric Properties

Composite Characterization: Hygrothermal Damage

	Reflected Lig	ht	Attended
Control: No aging	4699 - 9		30mm
Saturated: 5000 hrs. 50°C Distilled water		Streaks in longitudinal and transverse tows	
Constanting of the local division of the		1	4
	Transmitted	l Light	
Control: No aging	4066 - 6		30mm
Saturated: 5000 hrs. 50°C Distilled water	09-25	Increased Opacity in aged sample.	

Composite Characterization: Hygrothermal Damage

Composite Characterization: Hygrothermal Damage

Composite Characterization: Mechanical Properties Results- Strength

Composite Characterization: Mechanical Properties Results

Composite Characterization: Mechanical Properties Results-Modulus

Composite Characterization: Stress-Strain Results

Reduced bi-linear "knee" in conditioned samples

- Marks the onset of transverse failures
- Initiation vs growth

Composite Characterization: Stress-Strain Results

Composite Characterization: Stress-Strain Results

Composite Characterization: Failed Coupon Inspection

Composite Characterization: Failed Coupon Inspection

Composite Characterization: Acoustic Emission Results

Composite Characterization: Acoustic Emission Results

Quantify damage onset: Onset of AE activity

- Damage onset was reduced with hygrothermal conditioning
- [90]₂ correlates to damage onset in stress-strain response
- Damage onset was obtained for [0]₂ laminates

Conclusions

Change in Mechanical Properties

- Strength and damage tolerance was significantly reduced with hygrothermal aging: 40-54% reduction in strength.
- Variation in strength reductions between strength of unidirectional and cross-ply laminates suggests interply behavior is affected by hygrothermal aging.

Conclusions Continued

Damage Behavior

- Reduced damage onset with hygrothermal aging
- Reduced damage tolerance

Hygrothermal affects on AE

• Changes in AE behavior relate to changes in damage behavior, not changes in wave propagation behavior.

Effects of Moisture Absorption on Static Strength and Acoustic Emission Signatures of Off-Axis Fiberglass-Epoxy Composites

Off-Axis Test Matrix

Layup	Fabric	# of tests	Conditioning
[15] ₂	E-LT 3900	6	3 dry, 3 sat.
[30] ₂	E-LT 3900	6	3 dry, 3 sat.
[45] ₂	E-LT 3900	6	3 dry, 3 sat.
[±15]	E-LT 3900	6	3 dry, 3 sat.
[±30]	E-LT 3900	6	3 dry, 3 sat.
[±45]	E-LT 3900	6	3 dry, 3 sat.

Notes:

• 0.05"/min load rate

Partial Saturation Test Matrix

Layup	Fabric	# of tests	Conditioning
[0/90] _s	E-LT 3800	5	0.0% Moisture
[0/90] _s	E-LT 3800	5	0.2% Moisture
[0/90] _s	E-LT 3800	5	0.51% Moisture
[0/90] _s	E-LT 3800	5	0.71% Moisture
[0/90] _s	E-LT 3800	5	Fully Saturated ¹
[90/0] _s	E-LT 3800	5	0.0% Moisture
[90/0] _s	E-LT 3800	5	0.2% Moisture
[90/0] _s	E-LT 3800	5	0.46% Moisture
[90/0] _s	E-LT 3800	5	0.67% Moisture
[90/0] _s	E-LT 3800	5	Fully Saturated ¹

Notes:

- 0.06"/min load rate
- ¹ Still undergoing conditioning, results not in presentation

Visible Absorption Effects

- White striations visible after absorption
 - Along fiber angles
 - Consistent throughout all laminates
- Microscopic imaging inconclusive

Off-Axis Static Strength

Percentage of Damage 2436-1 Frequency Scatter vs Stress 400 Matrix Cracking Mechanisms [±15] E-LT 3900 Fiber Pullout 350 Fiber/Matrix Debond Fiber Breakage (KHz) 300 100%) Konency (200 90% Event 150 80% Average Events: 70% Saturated: 3712 100

Note: 3 samples tested for saturated and dry conditions, standard deviation error bars

Mountains & Minds

350 400 450 500

50 100 150

0

200 250 300

Mountains & Minds

Mountains & Minds

Mountains & Minds

Mountains & Minds

Note: 3 samples tested for saturated and dry conditions, standard deviation error bars

Mountains & Minds

Stress (MPa)

Model Parameters

- Laminate plate theory is usually used for true unidirectional plies
 - The addition of backing strands and stitching complicates analysis

Results

PARTIAL SATURATION

Ultimate Strength vs % Weight Gain

Conclusions

- Off-axis strength reductions similar to unidirectional
- Max stress failure criterion highlights degradation in shear strength

Has to be tuned to dry results

Acoustic emission analysis indicates a change in damage progression

Conclusions cont.

- Dry samples
 - AE analysis shows interfacial damage prior to matrix cracking
- Saturated samples
 - Change in progression indicates matrix cracking beginning prior to interface damage
- Matrix shear strength
- Matrix fracture toughness

Conclusions

- [0/90]_s degraded faster initially than [90/0]_s
 Verifies extension of Fickian diffusion
- Acoustic emission analysis inconclusive
 - Individual layups had different acoustic signatures
 - Comparison of two different layups yet to be successful

An Acoustic Emission and Hygrothermal Aging Study of Fiber Reinforced Polymer Composites

AE System Implementation

MHK Study

- Material Characterization for MHK applications
 - U.S. DOE Water Power Technologies Office
- MHK Database
 - Sandia National Laboratory & MSU
- Industry supplied material systems

MHK Material Summary

Label	Resin	Fabric	Layup
J1	Eastman Copolyester 5011, PETG	Vectorply E-QX 4800	[0/45/90/-45]4
J2	Derakane 470 HT-400 VE	Vectorply E-QX 4800	[0/45/90/-45]4
J3	Applied Poleramic SC18	Vectorply E-QX 4800	[0/45/90/-45]4
J4	Derakane 470 HT-400 VE	OCV WR27TW	[(0/90/)(45/-45)]4
J5	Applied Poleramic SC18	OCV WR27TW	[(0/90/)(45/-45)]4
J6	Applied Poleramic SC18	TPI 4582 (2x2 twill), T700 12K 670 gsm	[(0/90/)(45/-45)]4
J7	Applied Poleramic SC18	Vectorply C-QX 2300 778 gsm, T700 12K Quad	[(0/45/90/-45]4
J8	Derakane 470 HT-400 VE	TPI 4582 (2x2 twill), T700 12K 670 gsm	[(0/45/90/-45]4

Label	Resin	Fabric (hybrids)	Layup
CE1	Pro-set INF 114/211	Zoltek UD600	[(+45/-45)g/0c]s
CE2	Pro-set INF 114/211	Vectorply CLA 1812	[(+45/-45)g/0c]s
CE3	Hexion RIMR 035c/RIMH 0366	Zoltek UD600	[(+45/-45)g/0c]s
CE4	Hexion RIMR 035c/RIMH 0366	Vectorply CLA 1812	[(+45/-45)g/0c]s
CE5	Crestapol 1250PUL urethane Acrylate	E-BX 1700, CLA 1812, Veil	[(+45/-45)g/0c]s
CE6	AME 6001 VE +1.5% MCP	ELT-2900, E-BX 1700, ELT-2900	[0/+45/-45/0]s

MHK Material Summary Cont.

Label	Resin	Fabric	Layup
P1	РР	E-glass w/AMB	[0/90]3
P4	PA6	E-glass	[0/90]3
P5	PA11	E-glass	[0/90]3
P6	PET	E-glass	[0/90]3
P9	PETG	E-glass	[0/90]3
P11	HDPE	E-glass	[0/90]3
P13	PP	E-glass	[0/90]3

GLASS IN THERMOSET

→N1 →J1 →J2 →J3 →J4 →J5 →CE6

Tested in quasistatic axial tension

Partial Saturation

-[0/90]3

quasi-static axial tension

Partial Saturation

Tested in quasistatic axial tension

Partial Saturation

Conclusions

- Moisture Uptake
 - Thermoplastics have higher diffusion constants and free volumes than thermosets
 - Carbon Laminates absorb more moisture than glass laminates
 - Normalized by volume fraction comparing matrix
 - Thermoplastic laminates are observed to degrade (lose mass) in heated SSW after ~1000 hours

Tested in quasistatic axial tension

Modulus

Ultimate Stress

Conclusions

- Mechanical
 - Moduli are generally unaffected by moisture uptake
 - Strength and failure strain generally decrease with moisture
 - Some exceptions
 - Low quality laminates are affected less

Summary

- MSU and Sandia have performed many tests to characterize and quantify the effects of moisture on composite materials
- Broad range of tests and materials to investigate amount and type of damage
- Still many unanswered questions.

