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USGS IN Project Office Mission

* Maintain a comprehensive groundwater monitoring and
hydrogeologic studies program to evaluate the availability
and movement of water in the eastern Snake River Plain
aquifer.

« Describe processes controlling the fate of contaminants
(advective transport, dispersion, adsorption, dilution,
diffusion, radioactive decay, and chemical reactions)

* Provide independent reviews of hydrogeological data and
reports submitted by DOE and its contractors to the EPA
and the State of Idaho
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« OUTLINE
« Brief overview of wastewater disposal history at selected
Facilities

« Geologic description of the eastern Snake River Plain
and the aquifer system.
« Hydrologic description of the eastern Snake River Plain

aquifer
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Birch Creek
sinks

TAN/TSF 2

TAN/TSF 1
aMFC : TAN/TSF Injection

TAN Corehole 2*

EXPLANATION

i GINT Well-Entry, GIN 1,is local well identifier
East DD Abbreviation ( Drainage Disposal)
: - Butte TAN Test Area North WRRTF
L Middle Butte | 43°50' CTF Contained Test Facility Production
GIN4_giN5
Bia .
GIN1 4
*GIN3
GIN 2

Wastewater discharged to 310 ft deep

TAN injection well from 1953-1972 Yises
| |
Radioactive chemicals, organic 0 05 1 Mile
waste, and chloride and sodium 1 | I | I
0 05 1 Kilometer

primary constituents discharged
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| East
- Butte

Middle Butte

Atomic
Bia City vl

Wastewater discharged to 3 mile long
industrial waste ditch

Chloride, sulfate, and sodium primary
constituents discharged along with some
chromium.
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: Butte

Wastewater discharged to mostly
infiltration ponds at ATRC; Disposal well
and infiltration ponds at INTEC; buried
solid and liquid waste at RWMC

Primary constituents include tritium,
strontium-90, sodium, chloride, sulfate,
chromium, nitrate, and organic
compounds
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Volcanic fields include High Rock (HR), High Lava Plains (HLP), McDermitt (McD), Lake
Owyhee (LO), Owyhee—Humboldt (OH), Bruneau—Jarbidge (BJ), Twin Falls (TF), Picabo
(P), Heise (H), and Yellowstone Plateau (YP). Crustal/tectonic boundaries include the
Mesozoic (MZ) 0.706 line at the western edge of the North America craton (Nash et al.,
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Examples of ash fall extent
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Eastern Snake River Plain geology

Post Hot Spot volcanism

Four kinds of volcanism :
1. Snake River Olivine Tholeiite basalt eruption- common
2. Evolved composition rocks-Cedar Butte, Craters of the Moon,

Spencer-High-Point

3. Rhyolite domes-may be extreme case of (2)

. 4. Caldera eruptions-rare, cataclysmic
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midcrustal sill and £ e 6
associated - 63

50 8.0

features, from
Shervais and
others, 2006
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Snake River Olivine Tholeiites

\-—__"

PhOtO"f((/)T + Low SiO2, high in mafic
Hawaii Volcano minerals

5 Observatory
website

Chemically nearly identical

+ Rise fairly quickly-little
fractionation or crustal
assimilation

« Effusive eruptions, very much
like Hawai'ian eruptions-no
explosions, for the most part

+ Bulk of emplacement is by
tube-fed pahoehoe

* Monogenetic shield volcanoes-
each new volcano has its own
plumbing system, erupts from
dre]\ys to decades, then freezes
shut




Snake River olivine tholeiite basalts erupt from

shield volcanoes
S

USGS photo by |. C. Russell, 1901, near Arco, ID, USGS Bulletin 199, Plate 18

Sixmile Butte
A shield volcang__——-—+ ;




CROSS-SECTION CARTOON OF A BASALT TUBE Land surface
Lava crust

—_—

Malten lava

Pahoehoe flows follow the low areas in the landscape.
The flow lobe inflates.
As the lobe cools, the exterior surfaces fracture.

Fractures may disrupt magnetic inclination measurements
by causing pieces of solidified basalt to rotate.

Nearly all basalt flows are much longer than they are wide,
and fracture networks are directional. Groundwater moves
rapidly through the fractures, and very slowly through massive
basalt interiors and through fine-grained sediment.
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How to tell SROTs apart?




ROSS SECTIONS

800 °C Brittle Crust MAP VIEWS
1070 °C Visco-elastic Crust
Liquid Lava
e a

From Self and others, fig. 2, 1998

Lava
tubes
Tube fed
pahoehoe
flows

)

N (4)
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Snake River Aquifer at the
~ldaho National Laboratory

Solid part of aquifer is
mostly SROT basalt, \
(averages 85% over

whole INL site) and

eolian sediment, minor

amounts of fluvial

sediment

Sediment amount varies
depending on location,
volcanic highlands have
very little sediment, Big
Lost Trough may be up to
30%

Despite low volume,
sediment is a major
control on groundwater
movement and
contaminant transport

-z Image from USDA FSA National Agriculture Imagery Program (NAIP)
3 USGS The USDA-FSA Aerial Photography Field office
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Core drilling and paleomag sampling




Paleomag surface sampling

Duane Champion and Duane and Sam with drill and
Sam Helmuth discussing pump

outcrop, Duane with sun

compass




Possible sources of error
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1.Cross-section of flow lobe at firstemplacement

2. Lobe inflates as eruption progresses

Topographiclow

3.Cooling fractures form perpendicularto cooling
frontand may cause displacement

~

4. Rotated crust will have a differentinclination,
due to displacement




More sources of error
T e ———

« Corehole deviates from vertical-gyroscopic
deviation log allows mathematical correction

« Lightning strike when lava flow was at surface
resets paleomag

* Subsequent overlying lava flow raises older flow
above blocking temperature and reset paleomag-
can be corrected for to some extent

* Paleomagnetic data is non-unique, two lava flows
of very different age may have the same directions
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EXPLANATION

A Voleanic vent, Dows of which can be traced w0
the subsurface in coreholes

@ Carehole from which samples were collected
for paleomagnetic inclimation analysis

W aRa-conoos

Local well identifier Number only shows USGS well,

other names are local well names

', Approximate area uf (he Arco-Big Southern
L DBumeand Axial Voleanic Zone

Facility with location identifier
AWMC Radioaclive Wastc Managemen! Complex.
ATRC - Advanced Test Reactor Complex
INTEC 1daho Nuclear Technology and Engineering Cener
CFA  Central Facilitics Area

NRF  Naval Reactors Facility
TAN  Test Area North
MFC Matcrials and Fucls Complex
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Cross-section based on subsurface paleomagnetic

inclination from core, from Hodges and others, 2016
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Hydrology of the Eastern Snake River Plain Aquifer
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Simplified Geologic Cross Section
of the eastern Snake River Plain
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Figura 3. Idealized typical oliving tholziite pahoshoe basalt flow (modified from Self and othars, 1998, fig. 3, p.

90). The basalt flow is divided into three sections on the basis of vesicle charactaristics and fracture frequency.
Hydraulic conductivity is highest for the fractured upper crust, moderate for the lower crust, and lowest for the
diktytaxitic to massive intarior. The photograph of the pahoshoe lobe surface is courtesy of Scott Hughes, Emaritus
Professor, Idaho State Univarsity, Pocatallo, ldaho.
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Age and velocity of groundwater

DOE/ID-22177

» Two studies were done in the Mid-1990°s on aging

the young fraction of water at the Idaho National ESTRANTEN ACE NSO e b MK FRAOTC
Laboratory (INL) and from South_central Idaho. ENGINEERING AND ENVIRONMENTAL LABORATORY
» Studies were done using stable isotopes,
. Water-resources Investigations Report 01-4265
chlorofluorocarbons, dissolved gases, and
trittum/helium.

« Several wells at the INL and from wells in rangeland
southwest of the INL only contained small fractions
of young water.

Flow velocities calculated at the INL ranged from
about 0.5 to 4.3 m/day (about 2-14 ft/day)

Flow velocities for wells in south-central Idaho

(where the gradient 1s steeper) ranged from 5to 8
m/day (16 26 ft/ daY) AB: e e UE:GSwanespmmeileyOnlina Library

Age of Irrigation Water in Ground Water

from the Eastern Snake River Plain Aquifer,

L South-Central Idaho
- ""é
‘ by L.N. Plummer#, M.G. Rupert?, E. Busenberg?, and P. Schlossert

sclence far a changing wond




USGS has tested
the aquifer to learn
about water
movement in
different areas.
Green circled
areas on this
figure are areas
where water will
move very slowly.
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Particle tracking from
our Groundwater flow
model provided us
with the initial
assessment of how
particles will move
through the aquifer.
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From Fisher and others, 2012
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Recent work is
researching source
water chemistry to
better understand
water types and
flow direction.
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EXPLANATION
LDF Water-table contowr—Shows altitude of water
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