
The #H2IQ Hour

Today's Topic: African American History Month – Engaging the Fuel Cell and Hydrogen Energy Community with HBCUs

This presentation is part of the monthly H2IQ hour to highlight research and development activities funded by U.S. Department of Energy's Hydrogen and Fuel Cell Technologies Office (HFTO) within the Office of Energy Efficiency and Renewable Energy (EERE).

The #H2IQ Hour Q&A

✓ Q&A ×
All (0)

Select a question and then type your answer here, There's a 256-character limit.

Send

Send Privately...

Examples of Outreach – H2IQ Hour, STEM Show and Learns

H2IQ Hours

HFTO hosts monthly public webinars to share information about hydrogen and fuel cells status, progress and needs

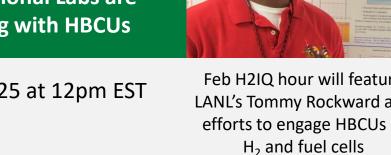
Upcoming H2IQ Hour: In celebration of African **American History Month:**

How National Labs are engaging with HBCUs

February 25 at 12pm EST

Feb H2IQ hour will feature LANL's Tommy Rockward and efforts to engage HBCUs in H₂ and fuel cells

Technical Assistance to Developer


Register at: energy.gov/eere/fuelcells/hydrogen-and-fuel-celltechnologies-office-webinars

H₂ and Fuel Cells Show and Learn Events For Students and in Partnership with Schools, **Universities and Science Museums**

HFTO has held events at the Smithsonian Air and Space Museum, Smithsonian Teachers Academy, U. of Maryland, K-12 schools, among others

Fuel Cell Car Show and Learn at Clarksburg Public High School in MD

Examples of Collaboration on H2 and Fuel Cells/STEM Awareness

Smithsonian Institution

- 2017, 2018, 2019 Smithsonian
 Science and Education Teachers
 Academy
- 2017 Smithsonian Ingenuity Festival Activities at the National Air and Space Museum
- 2017 Smithsonian's National Air and Space Museum - "Hispanic Heritage Month: Innovators in Air and Space" Festival

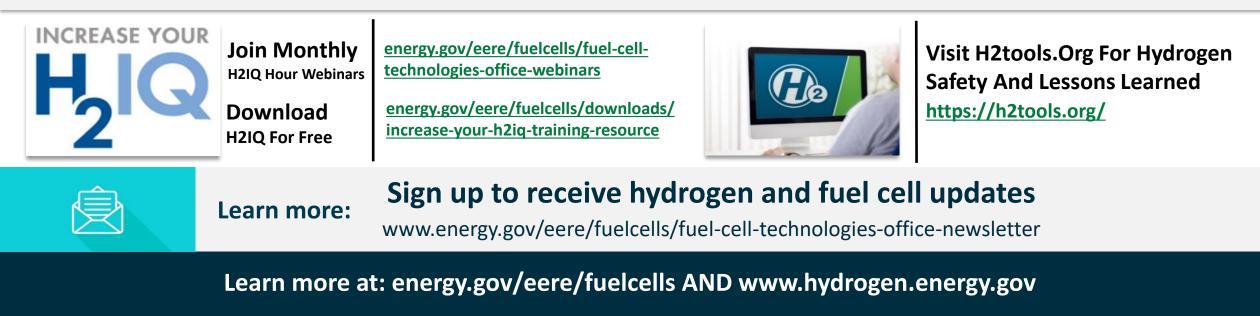
University of Maryland

- 2018 UMD Engineering Sustainability Day
- 2018 Maryland Day

FY21 Funding Opportunity Announcement Encourages HBCU Participation

- Covers \$33M in funding to support hydrogen and fuel cells R&D
- Topics include:
 - Fuel cells for heavy-duty trucks in coordination with the M²FCT consortium
 - Hydrogen production through high-temperature (high-T) water splitting (electrolysis) in coordination with the H2NEW consortium, as well as biological processes that use waste
 - Domestic manufacturing of high-T electrolyzers and related components.
- Important Deadlines:
 - Concept papers January 15, 2021
 - Full applications March 8, 2021.

FOA includes policy factor around team member diversity encouraging participants including but not limited to those from MSIs (e.g. HBCUs/OMIs) or members within Qualified Opportunity Zones, to apply.


Additional Resources and Opportunities for Engagement

Save the Date

Week of June 7, 2021 Annual Merit Review and Peer Evaluation Meeting (AMR) for the DOE Hydrogen and Fuel Cells Program

Resources

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

Fuel Cell Research Efforts: HBCU Students at LANL

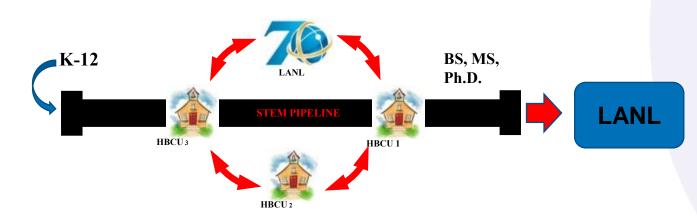
DOE HFTO H2IQ Feb 25, 2021

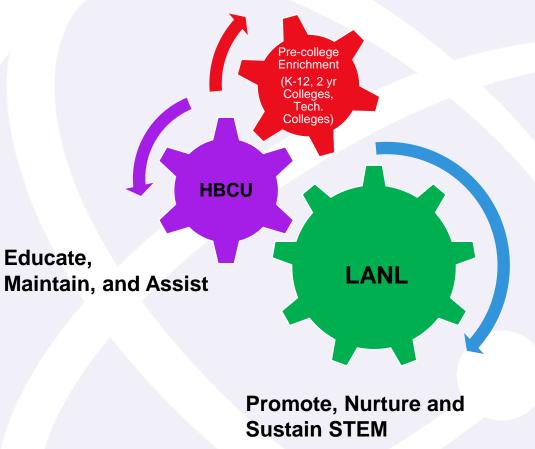
Mr. Tommy Rockward, Dr. Andre Spears, Mr. Stefan Williams, Mr. David Alexander

LA-UR-21-21836

Managed by Triad National Security, LLC., for the U.S. Department of Energy's NNSA

Acknowledgement


- Hydrogen & Fuel Cell Technologies Office
- LANL's Underrepresented Minority Program (formerly African American Partnership Program)
- NNSA MSIPP Program


Goal: To prepare the next generation of STEM workforce

Historically Black Colleges & Universities-Consortia Schools:

North Carolina A & T Allen University Benedict College Tuskegee University Howard University Fisk University Florida A. & M. University Morehouse College Prairie View A. & M. Univ. Tennessee State Univ. Southern University

Opportunities available for summer, year-round appointments and graduate research

LANL Interactions:

K-12: Outreach Program

 \bigotimes

Lab set-up

Technical Assistance to Developers: LANL Fuel Cell Short Course

		Day 1	Day 2
	9:15	Welcome/Safety & Security	9:00 Modeling – Holby
		troductions/Plan for the Day – Borup	9:45 Fuel Cell Materials Characterization: In
	9:30	Fuel Cell Overview – Borup	and Spernjak 10:30 Break
	10:05 10:50	Fuel Cell Electrochemistry – Spendelow BREAK	10: 40 Fuel Cell Electrocatalysis: Zelenay
	11:00	Durability Discussions - Borup	11:20 Material Characterization Techniques: 12:00 Lunch
	11:45 1:00	LUNCH (on your own) PEM for Fuel Cells - Kim	1:00 AC Impedance – Kreller/Mukundan
	2:00	LANL's MEA Process –	IEA Process –1:50 BREAKsion: MEA Fabrication and and Langlois2:00 Lab Session: Analysis of Cell Perfor Analytical Instrumentation/Cyclic Vell
3:00 Asse		Lab Session: MEA Fabrication and nbly – Lujan and Langlois	
	4:00	Deposition- Williamson, Romero	Crossover/Polarization Curve (CC/C) Kreller, Mukundan
	5:00	Adjourn	Meterial Obergeteriations Techning

Imaging and Tomography – Kreller : SEM, XRD & XRF- Martinez ormance: **/oltammetry/ H**₂ V)/AC Impedance – Rockward,

Dav 2

Material Characterizations Techniques:

SEM, XRF and XRD: Baker Martinez,

Electrochemistry Laboratory: Fundamentals and Corrosion Dumont 5:00 Adjourn

Day 3

8:45 Arrive at SM40; badging at Group Office 9:00 Small Fuel Cells and Fuel Cell Systems- Wilson 9:45 Hydrogen Fuel Quality and Analyzer- Brosha and Rockward 10:15 Bio Fuel Cells- Plamen 11:15 Discussion/Q&A, Course Evaluation, Wrap up and Adjourn

Every year at least 15 Scientists/staff, and students prepare an intensive 3 day course. Limited to ~15 slots, REPRESENTATION FROM HBCUS EACH YEAR

Peer-to-Peer Interactions

Testimony:

The Minority Serving Institutions Partnership (MSIP) program at Allen University (AU) is key for the continued success and increased visibility for the Division of Mathematics & Natural Sciences at AU. The program currently supports six (6) students with disciplines spanning from Biology to Applied Mathematics as well as many other activities which encourage our students to contribute and excel. A critical component of that partnership is The African American Partnership Program (AAPP) with Los Alamos National Laboratory (LANL). Many of our students, two of which will be visiting the laboratory this summer, who never considered research as a career are deciding to pursue graduate studies when they learn about this opportunity.- Dr. Anthony Stewart, Allen University

Left: Professor A. Stewart (Allen University and Andre Spears) with Dr. J. Chlistunoff. Right : Undergraduate Andre Spears being mentored by UNM Ph.D student, Joseph Dumont

HFTO/LANL Staff serving as Mentors

Rod Borup

Rangachary Mukundan

Cortney Kreller

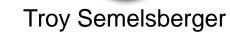
Sid Komini Babu

Mahlon Wilson

Ulises Martinez

Yu Sung Kim

Eric Brocha



Karen Rau

Hoon Chung

Today's Scholars, Tomorrow's Workforce

Not shown: Ian Marts Corey Henry Luis Chavez Elizabeth Martinez Darius Smith

Sophomore in Physics and Mathematics at Southern University and A&M College

2014

2015

André Spears LANL Timeline

Honors Graduate with B.S. in **Spring** 2016

Summer 2014

Began at LANL under the CMaES Consortium

Summer 2015

2016


Returned as summer intern

Research Topics

Investigating the Interactions of Competing Adsorbates on Pt Catalysts using Electrochemical Techniques

Probing the Electrochemical Characteristics of Carbon-Supported Platinum Catalysts Summer 2016 Returned as summer intern/mentor

Providing graduate internships, creating a diverse pipeline of STEM expertise

2017 Accepted into LANL AAPP

December 2018

Received M.S.

Research at NIST 2017 & 2018

Ph.D. Candidate

Probing the Impacts of Membrane Degradation with Ultra-Low Pt Loadings

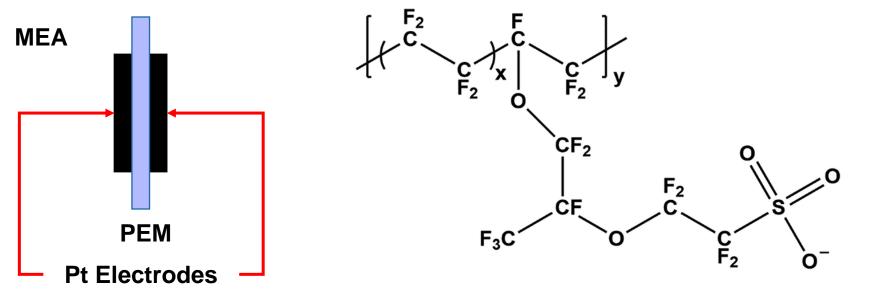
Publications

Investigation of Membrane Chemical Degradation as a Function of Catalyst Pt Loading

Unusually High Concentration of Alkyl Ammonium Hydroxide in the Cation-Hydroxide-Water Co-adsorbed Layer on Pt

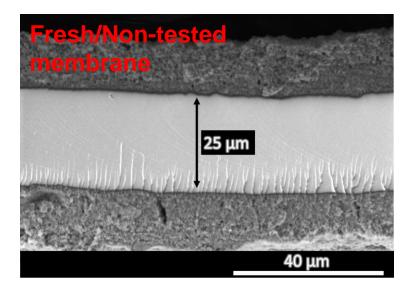
André J. Spears

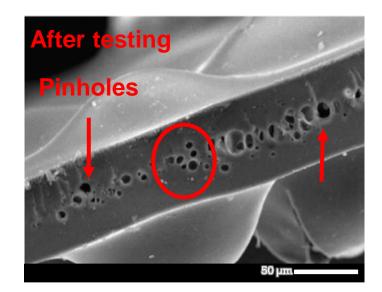
Nanoscience and Microsystems Engineering Doctoral Defense December 9th, 2020

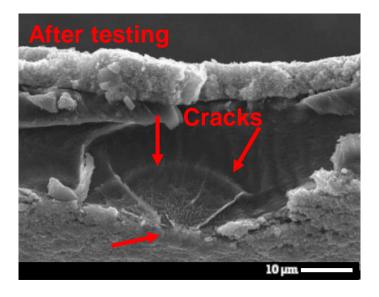

Probing the Impacts of Ultra-low Platinum Loadings on Membrane Degradation Mechanisms

Proton Exchange Membrane

- Integral component of MEA
- Electrolyte and separator of reactants
- High proton conductivity
- Proton exchange sites on sulfonic acid groups

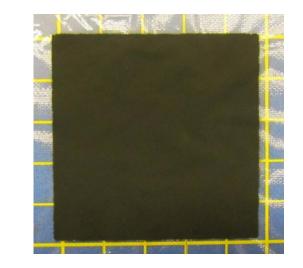



Shi, W., and L. Baker. "RSC ADVANCES, no. 120, 2015, p. 99284


Peroxide Formation Can Lead to Mechanical Degradation

- Mechanical failures: cracks, tears, pinholes, or punctures
- Higher gas crossover
- Lower humidity and Higher Temps causes membrane to become fragile, brittle

Tang, H., et. al. *J. Power Sources* **2007**. https://doi.org/10.1016/j.jpowsour.2007.03.061.


Huang, X., et. al; *J. Polym. Sci. Part B Polym. Phys.* **2006**. https://doi.org/10.1002/polb.20863.

Approach: Fuel Cell Setup

- Fuel Cell Technologies Hardware/Test Stand
 - 25 cm² active area, Triple Serpentine Flow, 25 BC Sigracet GDL
- Membrane Electrode Assembly (MEA)
 - Nafion[®] membranes (NR211, Ion Power, Inc, non-stabilized)
 - TKK Pt/C catalysts (20% and 50%)
 - 5% ionomer solution (Dupont D521)
 - Manufactured via Ultra-sonic spray coater
- XRF used to confirm Pt loading
- SEM used to measure membrane and electrode thickness

Approach: Test Protocols and Characterization Techniques

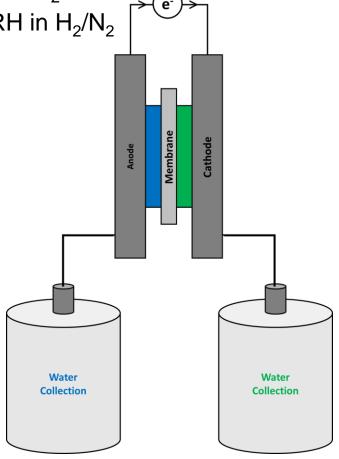
<u>Chemical Stability Accelerated Stress Test</u> (AST)

- –Induces radical production
- -Open circuit voltage (OCV) hold
- -90°C, 30% RH
- Back pressure: 150 kPa
- -UHP H₂/ Oiless Air: 10 stoic at 0.2 A/cm²
- -Failure: 20% decrease of initial OCV

Modified Accelerated Stress Test (MA)

- -Induces radical production
- –0.85 V hold
- –90°C, 30% RH
- Back pressure: 150 kPa
- -UHP H_2 / Oiless Air: 10 stoic at 0.2 A/cm²
- -Failure: less than 0.85 V

United States Department of Energy, DOE Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells (Electrocatalysts, Supports, Membranes, and Membrane Electrode Assemblies), 2007.


•Recovers reversible voltage losses

- •0.4 V (1 hr) at 30°C, Saturated RH in H₂/Air
- °10 A (30 min) at 35°C, Saturated RH in H_2/N_2
 - Slightly negative voltage
- •Repeated 3 times
- Performed every 24 hours

J. Zhang, J. Electrochem. Soc. 159 (7), F287 (2012)

Characterization Techniques

Ion Chromatography (IC)
 Scanning Electron Microscopy
 Transmission Electron Microscopy
 X-ray diffraction (XRD)

Investigation of Membrane Degradation as a Function of Pt Catalyst Loading

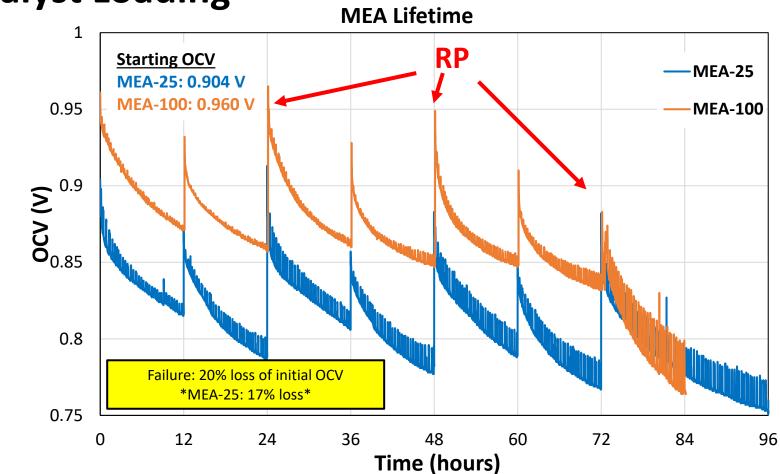
•25 cm² active area

•FCT hardware

•Triple Serpentine flow plates

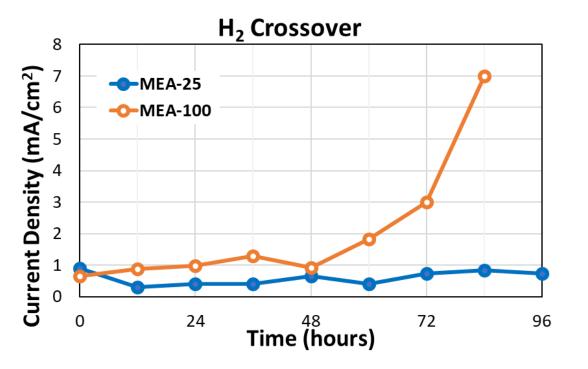
•Sigracet GDL 25BC

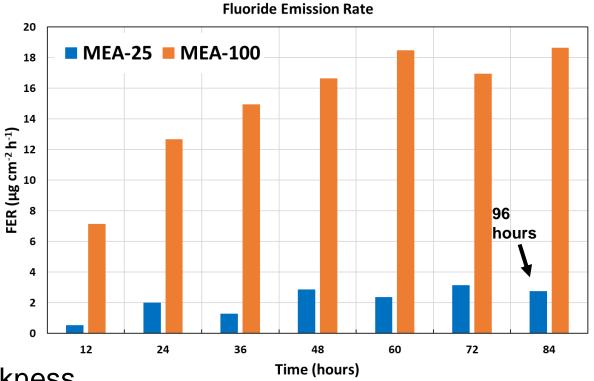
•<u>MEAs:</u>


•MEA-25: 0.025 mg/cm² at each electrode •MEA-100: 0.1 mg/cm² each at electrode

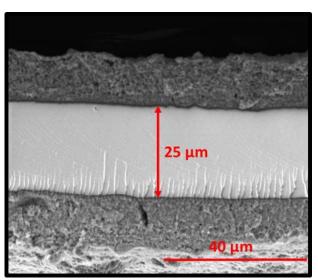
Observation:

•OCV decreases throughout the AST

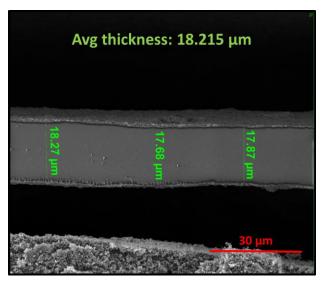

 RP was applied every 24h and partially restores OCV


•MEA-25 endurance test lasted longer possibly due to initial OCV value

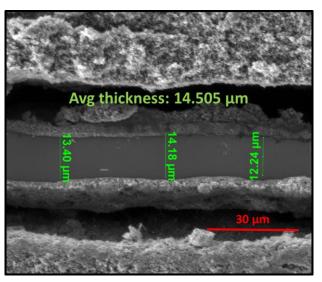
Characterization of Membrane Degradation


- •H₂ crossover used to gauge membrane thickness •MEA-25 is relatively stable
 - •MEA-100 increases with time due to membrane thinning
- •FER: (Fluoride is a non-adsorbing anion)
 - •MEA-25 had much lower amount of fluorine present
 - •MEA-100 FER suggests significant membrane degradation

<u>Thickness calculated from FERs</u> MEA-25: 23.18 μm MEA-100: 14.23 μm

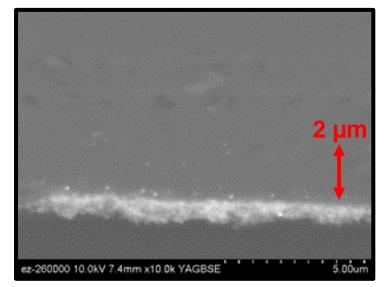


SEM Characterization Post-AST

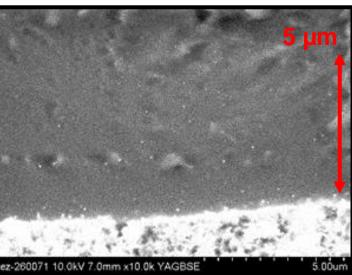

Fresh Membrane (Common)

MEA-25

MEA-100


DursLength of Test: 84 hours23.18 μmThickness based on FERs: 14.23 μmat 0.019Rate of Thickness Lost 0.13μm/h

- Length of Test: 96 hours Thickness based on FERs: 23.18 µm Rate of Thickness Lost 0.019 µm/h
- AST caused membrane thinning in both MEAs
- MEA-25 retained more membrane thickness, but it was tested for an additional 12 hours
- MEA-100 membrane decreased by 42% (avg thickness: 14.5 μm)
- SEM images are in agreement with FERs and H₂ Xover


Pt Particle Characterization

Sample	Crystallite Size (nm)	
50% Pt/C Catalyst	1.53	
MEA-25	1.92	
MEA-100	2.14	
Crystallite Size measured via XRD		

MEA-25

MEA-100

- Pt particle growth after AST
- Catalyst migration more significant with MEA-100 due to higher OCV
 - Pt stability partly depends on voltage
- Pt particles in membrane are sites for radical formation
- Higher Pt loading and higher OCVs leads to more Pt in the membrane resulting in more degradation

Addressing the differences in OCV!!!

AST Modified: Fixed Voltage at 0.85V

MEA Chemical Stability Accelerated Stress Test (AST)

- -Eliminate the impact of OCV variations
- -Applied Voltage (AV) hold at 0.85 V

–90°C, 30% RH

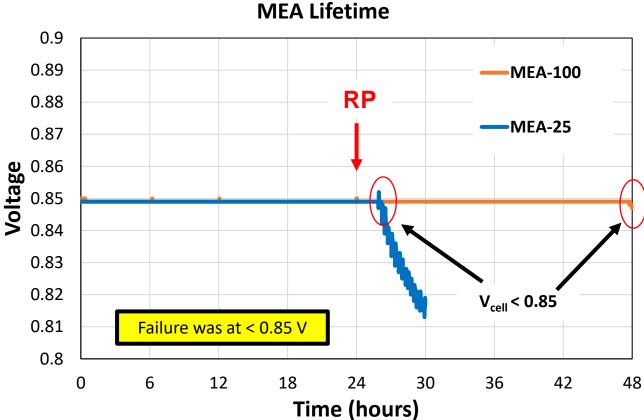
-Back pressure: 150 kPa

-UHP H₂/ Oiless Air: 10 stoic at 0.2 A/cm²

Diagnostics taken in 6-hour increments

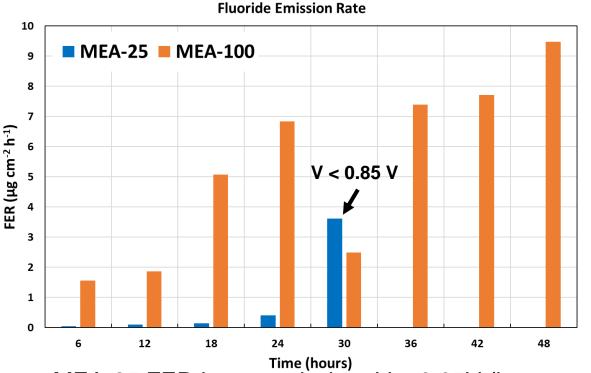
-H₂ Crossover

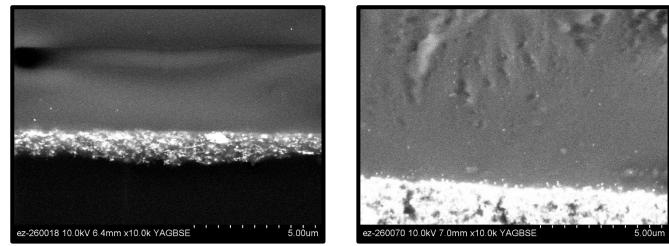
-lon analysis in effluent water


Recovery Protocol (RP)

-0.4 V (1 hr) at 30°C, Saturated RH (H₂/Air) -2 A (30 min) at 35°C, Saturated RH (H₂/N₂) -Run every 24 hours

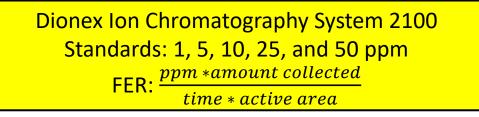
MEAs Tested


•MEA 25: 0.025 mg/cm² each electrode •MEA 100: 0.1 mg/cm² each electrode



Observations

MEA-25 maintained 0.85 V for shorter time due to such low Pt loading


Membrane Characterization Post-Modified AST

 SEM was applied to examine particles in membrane

• Pt dissolution is greater with MEA-100 due to extended time and 4x the loading

- MEA-25 FER increased when V < 0.85V (began operating at OCV)
- MEA-100 has higher FERs throughout experiment
- Thickness based on FERs
 - MEA-25: 24.8 µm
 - MEA-100: 22.8 µm (23.3 µm through 30 hours)

Summary

—Investigation of Membrane Chemical Degradation as a Function of Catalyst Platinum Loading, ECS Trans. (2019). https://doi.org/10.1149/09208.0467ecst.

Increasing Pt loading increase membrane degradation

Higher OCVs leads to more Pt in membrane

—Probing Membrane Degradation with Varying Catalyst Layer Thickness and Carbon Support, ECS Trans. 98 (2020). https://doi.org/10.1149/09809.0407ecst.

Increasing catalyst layer thickness protects bulk membrane

•Carbon support type and morphology impacts peroxide formation

-Studying the Impact of Ce on Membrane Degradation with Bi-membranes

•Pt in the membrane accelerates membrane degradation

•Ce reduces radical formation and extends membrane lifetime

• To be published

Acknowledgements

Dr. Fernando Garzon

Dr. Abhaya Datye Dr. Lok-kun Tsui

Group Members

Dr. Rangachary Mukundan (HFTO) Mr. Tommy Rockward Stefan Williams

LANL Colleagues

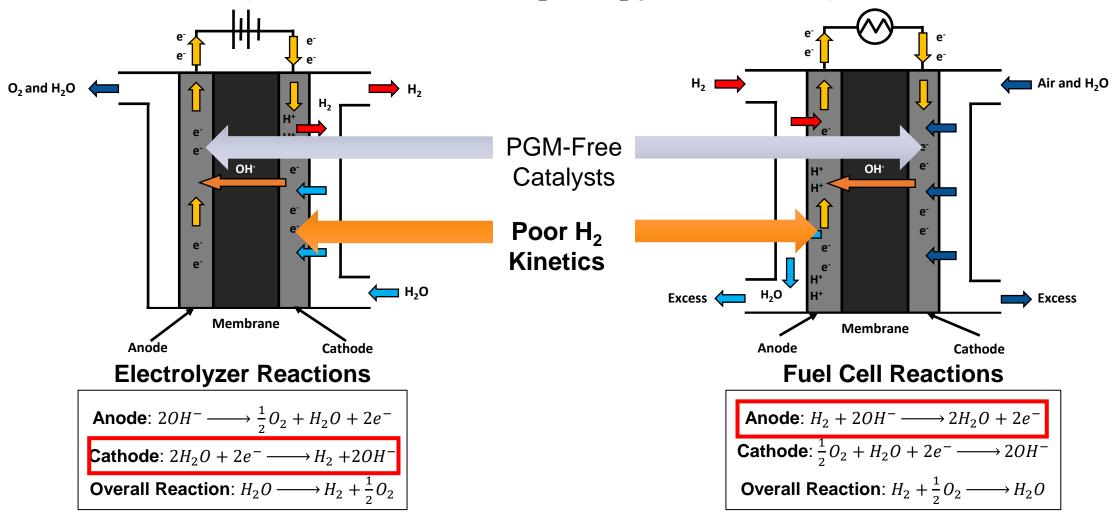
EST.1943 -

Providing graduate internships, creating a diverse pipeline of STEM expertise

Stefan Williams: LANL Timeline

Expected Graduation Date: May '21

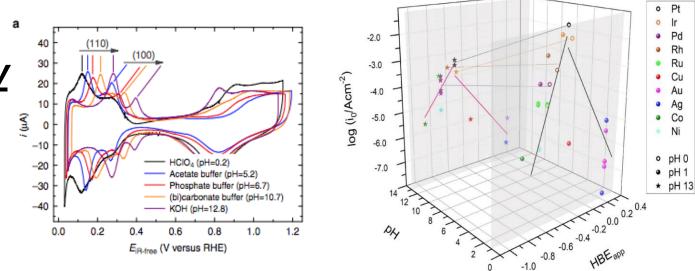
Stefan T. D. Williams


Advisor: Dr. Thomas A. Zawodzinski Ph.D. Candidate at The University of Tennessee, Knoxville Graduate Research Assistant at Los Alamos National Laboratory

The Controlled Synthesis of Hydrogen Electrocatalysts for Alkaline Exchange Membrane Fuel Cell and Electrolysis Applications via Chemical Vapor Deposition

Alkaline Fuel Cell/ Electrolyzer: Issues

Fuel Cell: converts chemical energy into electrical energy via a galvanic process *Electrolyzer*: converts water in to H_2 and O_2 gas via an electrolytic process


Theories Pertaining to Sluggish Kinetics of HOR/HER in Alkaline Environments

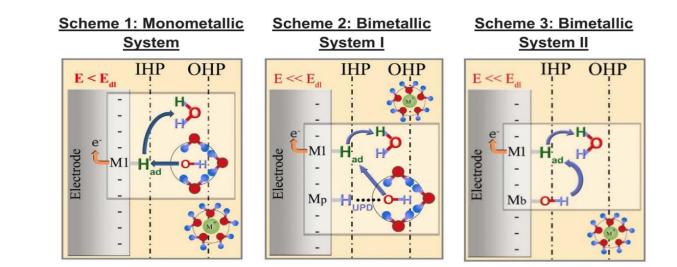
Hydrogen Binding Energy

"The HBE is the sole descriptor for the HOR/HER activities on single metallic Pt" – **Sheng** et. al.

HBE is measured through...

 $\Delta G_{HBE} = -E_{peak} * F$

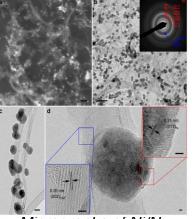
Bifunctional Mechanism

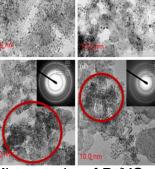

"...results strongly suggest that oxophilic metal hydr(oxy)oxides lower the energy barrier of the Volmer step via the bifunctional mechanism." –**Li** et. al.

Volmer Step:

 $H - * + OH^- \leftrightarrow * + H_2O + e^-$

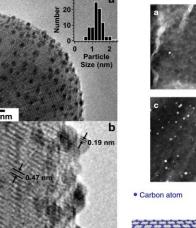
Bifunctional Catalyst promote

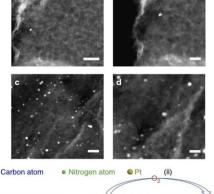

H⁺ Desorption & Water Dissociation

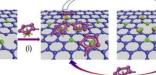


Typical Catalyst Synthesis Methods

Solution-Based Methods

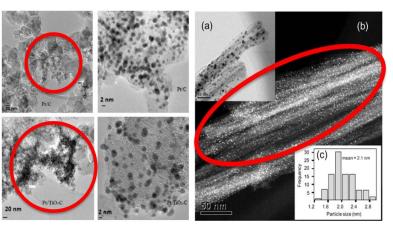



Micrographs of Ni/N- CNT^1


Micrographs of Pt/XC-**72**²

- Inexpensive precursors
- Moderate control of size and shape
- Moderate recovery of materials
- Low control on distribution
- Post-synthesis treatments required

Atomic Layer Deposition

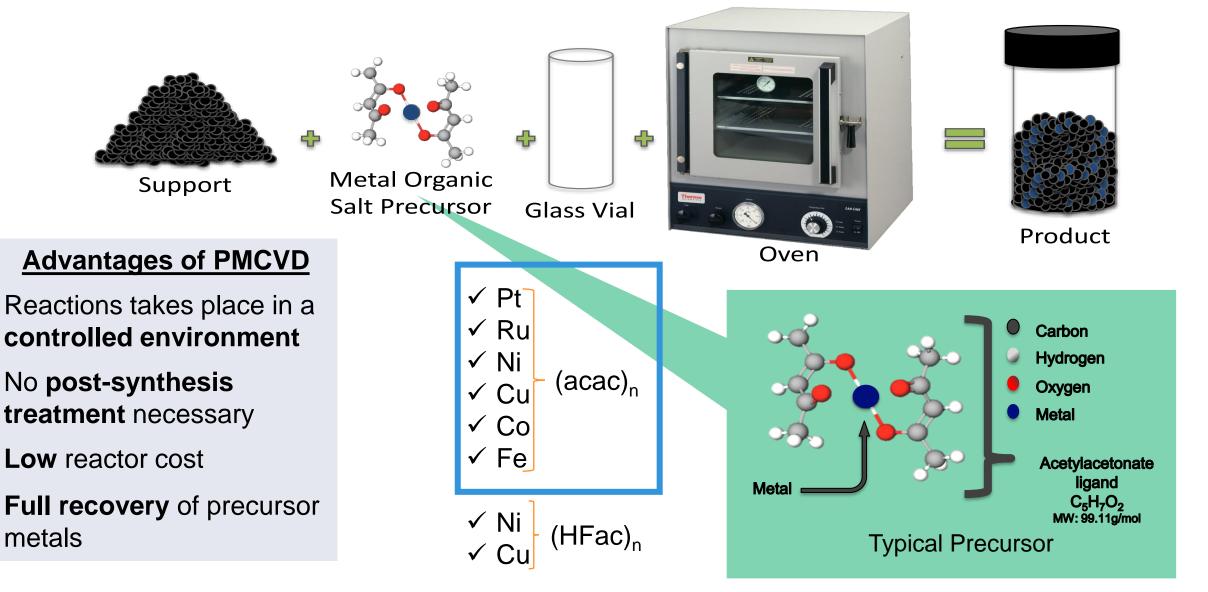

Ru-Pt bimetallic

nanoparticles supported

on alumina spheres³Single-atom and cluster Deposition of Pt on nitrogen rich graphene⁴

- Increased distribution of particles
- Recovery of materials
- High control of size and shape
- High cost reactor and materials

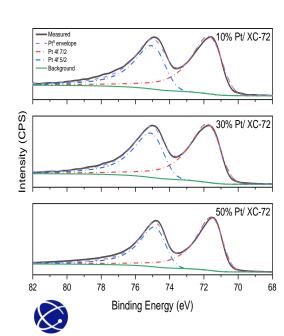
Chemical Vapor Deposition

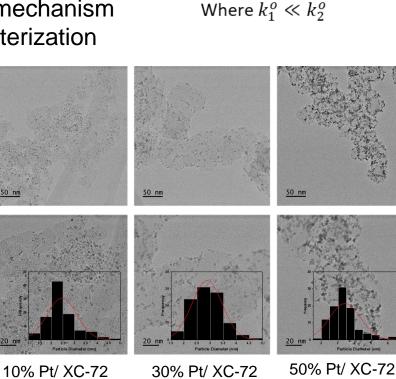

Micrographs of 10% Pt/XC-72 Pt decorated on and 5%TiO2-C nanoparticles⁵ TiNT⁶

- Small particle size
- Expensive reactors and precursors
- Low control on shape
- Low recovery of precursor materials

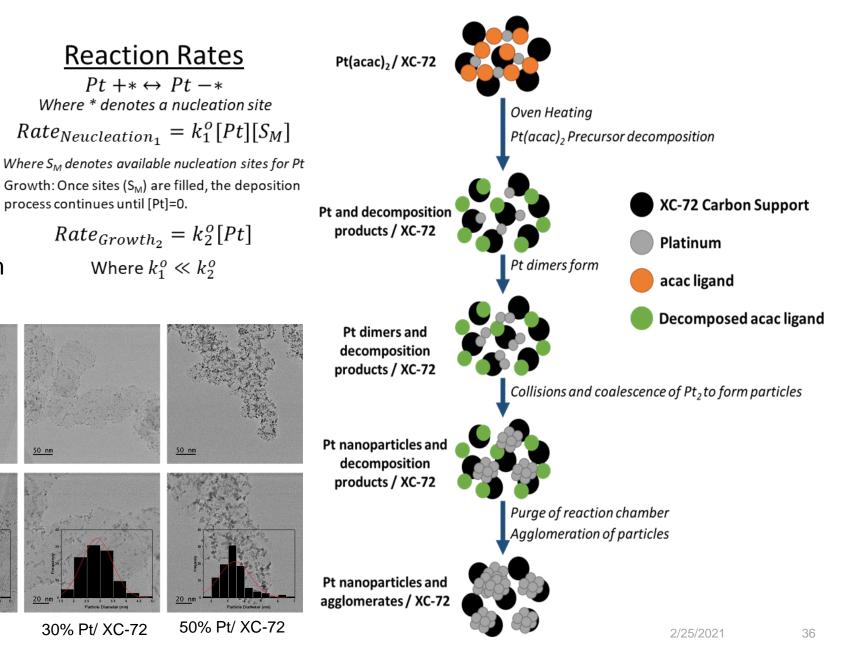
¹Zhuang, Z., et. al. Nat Commun 7, 10141 (2016) ²Huang, R., et. al. J. Power Sources, 2012, 205, 93-99 ³Christensen, S. et. al., Nano Lett. 2010, 10, 8, 3047-3051 2010, 495, 458-461

Poor Man's Chemical Vapor Deposition (PMCVD)

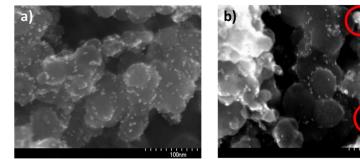

PMCVD Rate Laws and Deposition Mechanism

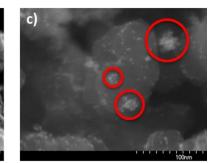

Reaction Rates

 $Pt + * \leftrightarrow Pt - *$


 $Rate_{Growth_2} = k_2^o[Pt]$

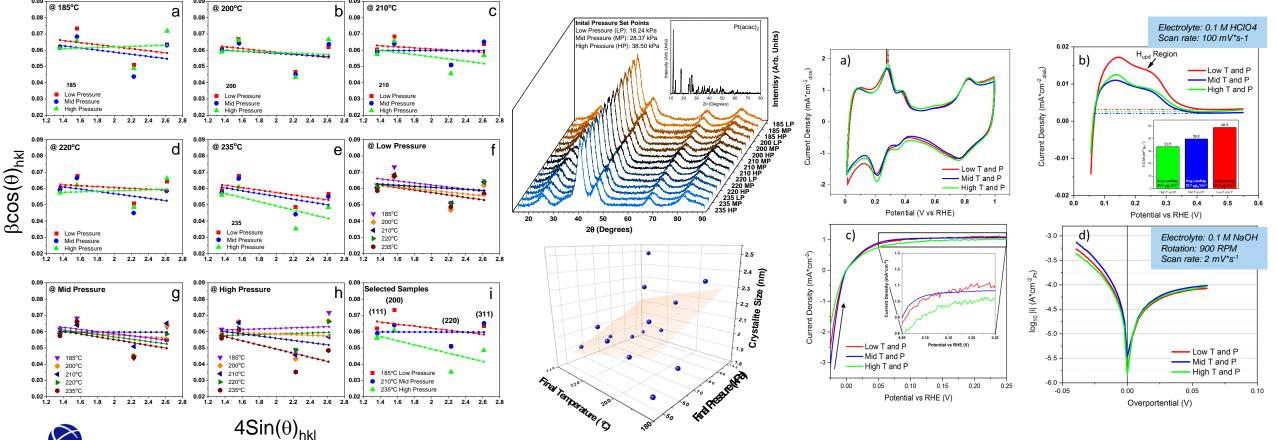
- Precursor loading where caried to probe the PMCVD deposition mechanism
- XPS elucidated the deposited Pt nanoparticles are fully reduced in a single step process.
- Particle size varies linearly with increase in Pt precursor.
- Rate laws and deposition mechanism align with materials characterization



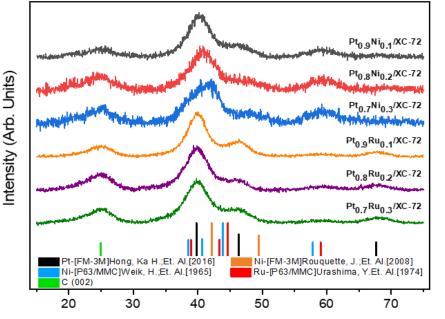

process continues until [Pt]=0.

Parametric Study on PMCVD Synthesized Pt/C Catalysts

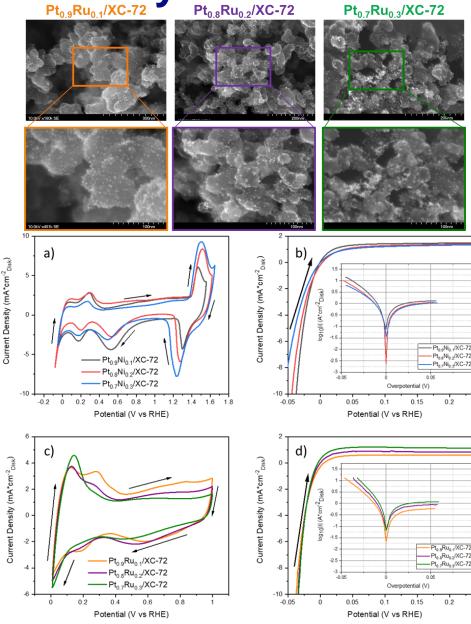
- Pressure and Temperature were varied to optimize the PMCVD process for Pt based electrocatalyts
- XRD analysis shows variations in microstrain owing to an increase in catalytic performance
- Microstrain is now a descriptor for activity in alkaline media



Low T and P


Mid T and P

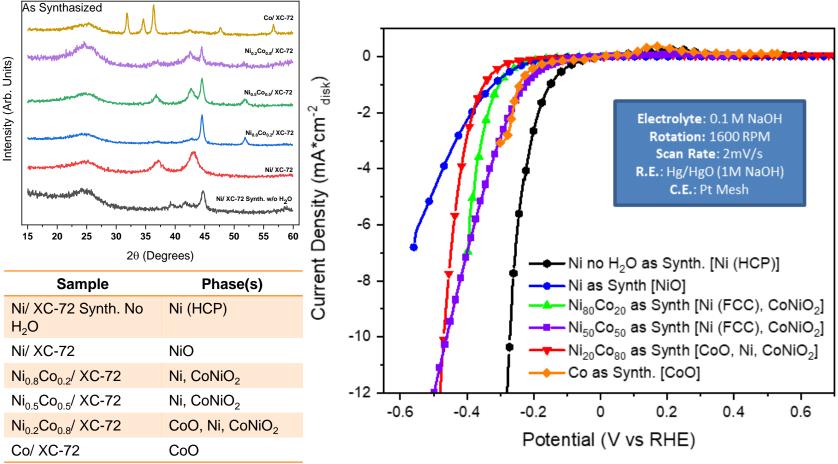
High T and P


Pt_xNi_y/C and Pt_xRu_y/C Bimetallic Electrocatalyts

- Bimetallic Catalysts were prepared using CVD
- Nanoparticles are uniformly dispersed (Diameters: 2-4nm)
- Facile alloying is achieved with like space group metals (Pt and Ni)
- Minimal alloying occurs in mixed space group metals
- (Pt and Ru)
- Pefromace increases with the addition of oxyphilic metals per the bifunctional mechanism

20 (Degrees)

Comula	Pt (111) 2q	а	Vegard's Law	XRF		
Sample			Х	Wt.% Pt	Wt.% Ni	Wt.% Ru
Pt _{0.9} Ni _{0.1} /XC-72	40.204	3.88	0.083	87.66	12.34	
Pt _{0.8} Ni _{0.2} /XC-72	40.771	3.83	0.211	75.02	24.98	
Pt _{0.7} Ni _{0.3} /XC-72	41.050	3.81	0.263	62.82	37.18	
Pt _{0.9} Ru _{0.1} /XC-72	39.901	3.911	0.057	88.60		11.40
Pt _{0.8} Ru _{0.2} /XC-72	39.853	3.916	0.016	76.97		23.03
Pt _{0.7} Ru _{0.3} /XC-72	39.887	3.913	0.040	69.63		30.37



0.24

PGM-Free H₂ Catalysts

- Ni, NixCoy, and Co catalysts were produced using PMCVD
- PMCVD provides a facile way to synthesis HCP Ni nanoparticles
- HCP Ni shows the highest activity for HER at minimal overpotentials

	<u>Loading</u> (mg*cm ⁻²)	Overpotentia	als	Mass Activity @ -	
<u>Catalysts</u>		Current Density (mA*cm ⁻²)	<u>n</u> (mV)	<u>0.25V</u> (mA*mg⁻¹)	
Ni no H ₂ O	0.072	1 10	150 272	-86.58	
Ni	0.15	1 10	321 -	-2.55	
Ni ₈₀ Co ₂₀	0.061	1 10	305 -	-5.46	
Ni ₅₀ Co ₅₀	0.103	1 10	224 461	-14.54	
Ni ₂₀ Co ₈₀	0.11	1 10	350 470	-1.37	
Co	0.15	1 10	243 -	-8.21	

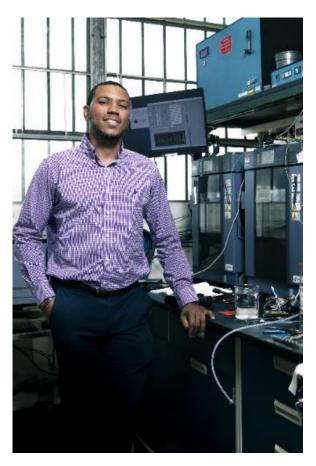
- HER Activity (based on mass activities and overpotentials):
 - Ni no H₂O>> Ni₅₀Co₅₀> Co>Ni₈₀Co₂₀>Ni₂₀Co₈₀>Ni
- The PGM-Free electrocatalysts exhibited poor HOR performance.
- HCP Ni crystal structure favors H₂O adsorption more than FCC Ni
 - Increasing the rate of water dissociation' 2/25/2021 39

- Williams, S. T. D; Kilpatric, L.; Elgamall, R. A.; Benivedez, A.; Zawodzinski, T. A.; "On the Deposition Mechanism and Material Characterization of Modified Chemical Vapor Deposition Synthesized Materials."
- Williams, S. T. D; Ard, B.; Rockward, T. Q.; Martinez, U.; Zawodzinski, T. A.; "A Parametric Study of Chemical Vapor Deposition Synthesized Hydrogen Electrocatalysts for Alkaline Media Devices."
- Williams, S. T. D; Elgamall, R. A.; Goenaga, G. A.; Rockward, T. Q.; Zawodzinski, T. A. "Synthesis and Characterization of Bimetallic Platinum-Ruthenium and Platinum-Nickel Electrocatalysts for Hydrogen Reactions in Alkaline Media."
- Williams, S. T. D; Rockward, T. Q.; Martinez, U.; Zawodzinski, T. A. "Synthesis and Characterization of Chemical Vapor Synthesized Precious Group Metal-Free Electrocatalyst For Hydrogen Reaction in Alkaline Media."

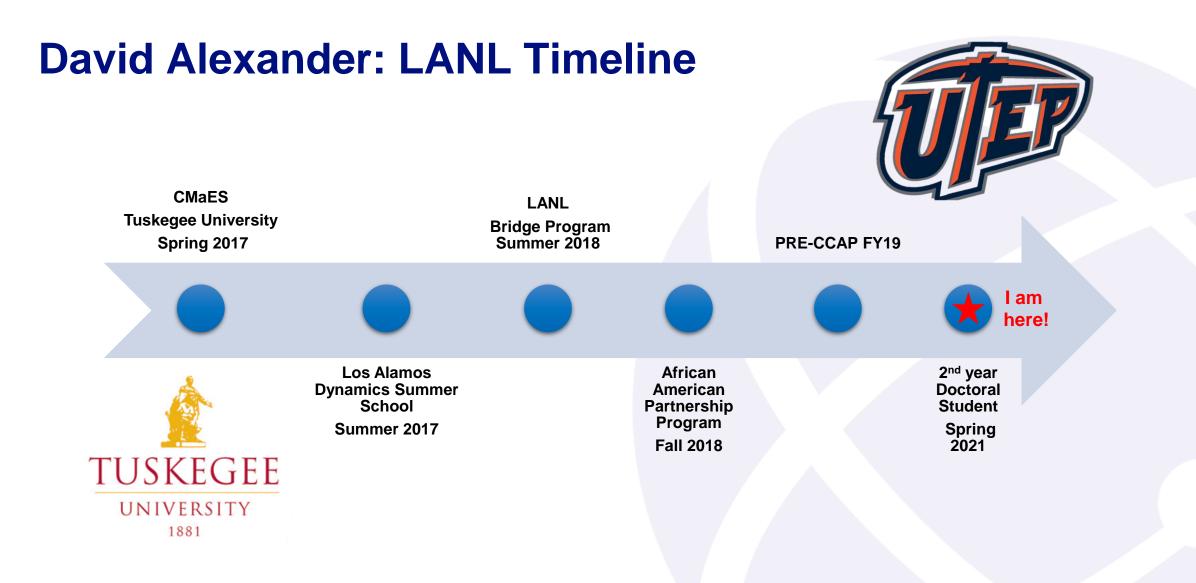
Acknowledgments

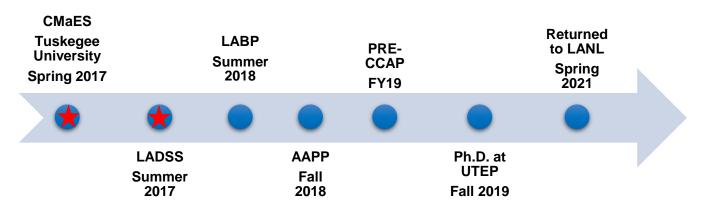
Dr. Gabriel Goenaga Dr. Nelly Cantillo Mr. Brice Ard Mr. Lucas Kilpatrick

Mr. Tommy Rockward Dr. Ulises Martinez Mr. André Spears

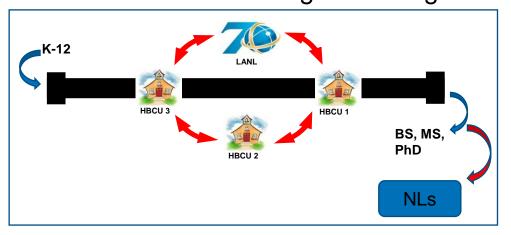

THE UNIVERSITY OF NEW MEXICO. Dr. Angelica Benavidez

Los Alamos National Laboratory African American Partnership Program

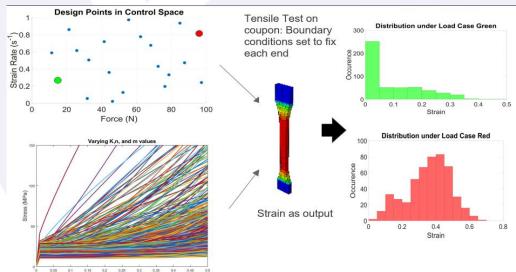



David Alexander IV

Advisor: Dr. Calvin Stewart Mentors: Dr. Rod Borup (HFTO) Mr. Tommy Rockward Ph.D. Student at The University of Texas, El Paso Graduate Research Assistant at Los Alamos National Laboratory

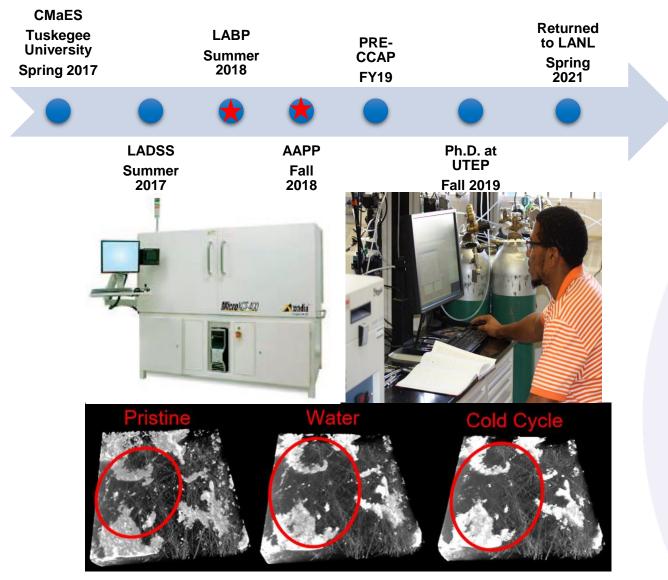


Consortium for Materials and Energy Security (CMaES) NNSA MSIPP funding at Tuskegee


- Efforts to create STEM pipeline from K-12 to National Labs involving HBCUs
- Received COMSOL and LabVIEW software training at Tuskegee before attending LADSS

LANL Experiences...

Los Alamos Dynamic Summer School (LADSS)

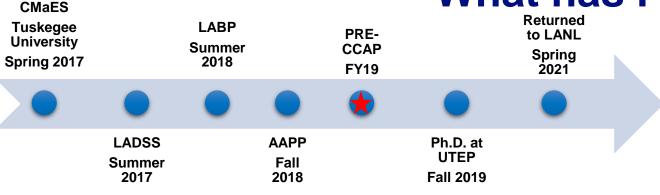


- 21 students selected nationwide
- Career/Technical development tutorials
- Multi-disciplinary team of 3 on single project

Strain

- Multiple Projects: (i) Material properties in extreme conditions, (ii) mixed potential sensor development
- Hands-on experience as M. E. graduate
- Searched and applied for doctoral programs

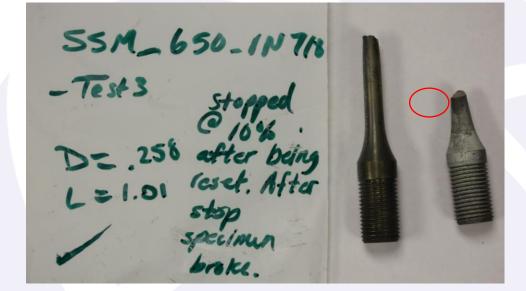
LANL Experiences...

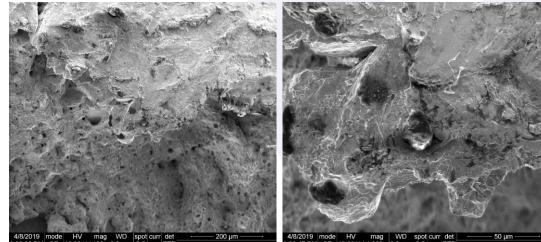

African American Partnership Program (AAPP)

Providing graduate internships, creating a diverse pipeline of STEM expertise

- Established in 2014
- AAPP focuses on long-term relationships between LANL, students, and universities, while assisting with the completion of graduate degrees
- <u>Long term goal</u>: Fund promising participants with organizational resources to ultimately hire deserving candidates

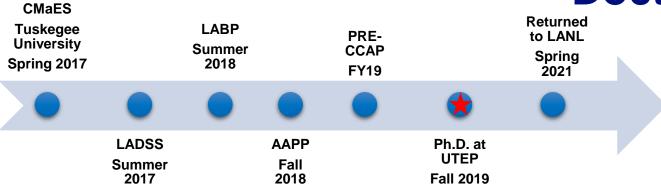
What has PRE-CCAP done for M.E.?




NNSA MSIPP Scholar

- Accepted into M.E. Ph.D. Program at UTEP
- Early start on Ph.D. research
 - On-Going research on BPP via Additive manufacturing
 - FC Stach System Design

Retuned to LANL

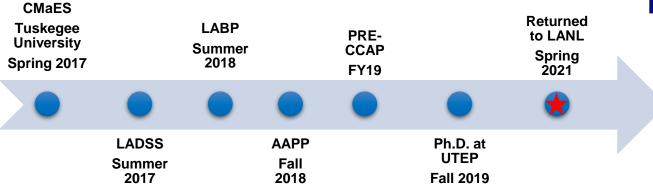

UTEP sample and SEM images of failure site

4/8/2019 mode HV mag WD spot curr det _____ 3:20:47 PM SE 10.00 kV 1 600 x 8.2 mm 3.5 --- ETD

Doctoral Program at UTEP

Completed 2nd year of Ph.D. Program

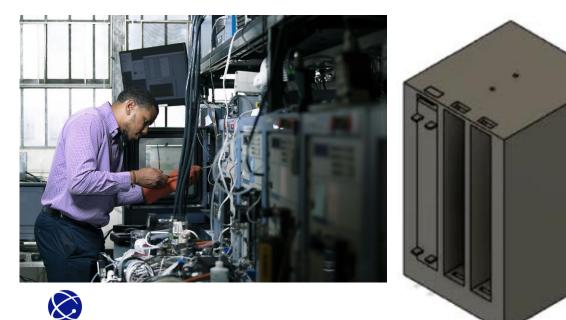
- Graduate certification in 3D engineering and additive manufacturing
- Professional Project manager Certification (Exam: June 2021)


Material extrusion 3D printer for additive manufactured fuel cell hardware

Additive manufactured fuel cell housing prototype fabricated at UTEP

2/25/2021

Doctoral Research at LANL



Project 1: Bipolar Plate Design

The aim is to design new bi-polar plates.

Project 2: Novel FC Stack Design

The aim is to design new fuel cell stack systems.

Thank You For Your Attention

Providing graduate internships, creating a diverse pipeline of STEM expertise

The #H2IQ Hour Q&A

Please type your questions into the **Q&A Box**

All (0)

✓ Q&A

Select a question and then type your answer here, There's a 256-character limit.

Send

Send Privately...

X

The #H2IQ Hour

Thank you for your participation!

Learn more:

energy.gov/fuelcells hydrogen.energy.gov