DOE Bioenergy Technologies Office (BETO) 2021 Project Peer Review

Integrating an Industrial Source and Commercial Algae Farm with Innovative CO₂ Transfer Membrane and Improved Strain Technologies

March 23, 2021 Advanced Algal Systems

Ken Reardon Colorado State University

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

- Purchased CO₂ for pH control and added inorganic carbon (iC) is one of the major costs of industrial algal cultivation.
- CO₂ costs are high because traditional sparging leads to CO₂ utilization efficiencies (CUE) of only 10-15%.
- The objectives of this project are to increase CUE with a novel enzymatic membrane transfer system and to develop a faster-growing variant of *Nannochloropsis oceanica*.
 - 25% increase in CUE
 - o 20% productivity increase
- Significance: Lower algal biofuel cost

- Project structure
 - Task 1 (enzymatic membrane)
 - Enzyme improvement (NREL)
 - Membrane and module development (CSU)

Collaboration within task:

- Desired enzyme properties
- Methods for rate measurement
- Production of improved variants for testing

- Project structure
 - Task 1 (enzymatic membrane)
 - Task 2 (improved strains)
 - Engineered carbon concentrating mechanism (CSU)
 - Strain adaptation (NREL)
 - Strain characterization (CSU)

Collaboration within task:

- Discussion of test conditions
- Shared genome sequence and annotation
- Proteomics analysis of variants

- Project structure
 - Task 1 (enzymatic membrane)
 - Task 2 (improved strains)
 - Task 3 (integration)
 - Pond modeling (CSU)
 - iC measurement system (NREL)
 - System performance evaluation (CSU, QH, NBB, NREL)
 - Process modeling (CSU)
 - TEA and LCA (CSU, NREL)

Collaboration within task:

- Data for modeling
- Testing of iC injection points from model
- TEA guidance for experiments

- Project structure
 - Task 1 (enzymatic membrane)
 - Task 2 (improved strains)
 - Task 3 (integration)

Collaboration <u>across</u> tasks:

- Data for all modeling
- Membrane modules in cultivation trials
- Strains for cultivation trials
- TEA guidance for experiments

- Project structure
- Communication
 - Biweekly project team meetings
 - Exchange of materials
 - Collaboration on experiments and modeling

- Project structure
- Communication
 - Biweekly project team meetings
 - Exchange of materials
 - Collaboration on experiments and modeling
- Decision-making
 - PI in consultation with task leads

- Project structure
- Communication
- Decision-making
- Project risks
 - Monitoring:
 - Project update meetings with follow-up
 - Review of quarterly progress reports
 - Mitigation:
 - Discussion and input
 - Evaluation of alternatives
 - Parallel efforts

- Project structure
- Communication
- Decision-making
- Project risks
 - Monitoring:
 - Project update meetings with follow-up
 - Review of quarterly progress reports
 - Mitigation:
 - Discussion and input
 - Evaluation of alternatives
 - Parallel efforts

Examples:

- Development of improved strain: planned parallel efforts
- Development of improved enzyme: added effort to broaden options

				/1				Y2			7	73	
	V	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
start of quarter	10/1/18	1/1/19	4/1/19	7/1/19	10/1/19	1/1/2			10/1/20		4/1/21	7/1/21	10/1/21
months in quarter		1–3	4–6	7–9	10–12	13–1	16-1	19–21	22–24	25–27	28–30	31–33	34–36
Validation Phase							_	G/NG/					G/NG/
Obj 1: Develop membrane system for transfer of CO_2 to													
water as bicarbonate													
Task 1.1: Protein engineering of carbonic anhydrase to		M1.1.1			M1.1.2		M1.1 3	3 M1.1.4					
improve pH tolerance (NREL)		IVI I . I . I			W11.1.2		W11.1	**************************************					
Task 1.2: Preparation and characterization of carbonic			M1.2.1			M1.2	2						
anhydrase membranes (CSU)			1011.2.1			1011.2							
Task 1.3: Modeling, construction, and demonstration of CO ₂					N (1 2 1		N/1 2						
transfer module (CSU)					M1.3.1		M1.3	2 M1/3/3					
, ,													
Obj 2: Engineering of Nannochloropsis oceanica for													
enhanced carbon uptake													
Task 2.1: CCM engineering in N. oceanica (CSU)					M2.1.1	M2.1	2						
Task 2.2: Strain adaptation to high bicarbonate levels					M2.2.1			M2:2:2					
(NREL)					IVIZ.Z.1			<i>*************************************</i>					
Task 2.3: Characterize combined strain (photophysiology, -							M2.3				M2.3.2		
omics) CSU)							1012.3				1012.3.2		
Obj 3: System integration, deployment, and validation													
Task 3.1: Determine optimal carbon introduction location to				M3.1.1			M3.13		M3.1.3	M3.1.4		M3.1.5	
raceway pond (CSU)				1/13/1/1			1,12,11		1,15,1,5	14151111		14151115	
Task 3.2: Develop and test system for gas-phase CO ₂						M3.2							
monitoring and control (NREL)						1015.2	1						
Task 3.3: Evaluate performance of C delivery and strain				M3.3.1									M3.3.3
uptake (CSU, NREL, QH)				W13.3.1				M3.3.2					M3.3.4
Task 3.4: Engineering Process Modeling (CSU, NREL)						M3.4	1			M3.4.2			
Task 3.5: Concurrent TEA and LCA (CSU, NREL)						M3.5	1	////////					M3/5/2/

2 - Approach

Task 1: Membrane system for efficient transfer of CO₂ to water

- Protein engineering of carbonic anhydrase (CA) to improve pH tolerance
 - Challenge: Find/create variant with durable activity at pH < 7
- Preparation of CA-containing membranes
- Construction, modeling, and testing of iC transfer module
 - Challenge: Developing test system

Task 1: Membrane system for efficient transfer of CO₂ to water

- Protein engineering of carbonic anhydrase (CA) to improve pH tolerance
 - Challenge: Find/create variant with durable activity at pH < 7
- Preparation of CA-containing membranes
- Construction, modeling, and testing of iC transfer module
 - Challenge: Developing test system
- Milestone 1.1.2: Demonstrate a carbonic anhydrase variant with an active half-life of 10 hours at pH 6.
- Go/No-Go: Demonstration of enzymatic membrane module for inorganic carbon delivery into an aqueous phase at a minimum flux of 2 x 10⁻⁴ mol/s·m² at pH 7 and 30 °C.

Task 2: Engineering of *N. oceanica* for enhanced carbon uptake

- CCM Engineering in *N. oceanica*
 - Challenge: Unstable transformants
- Strain adaptation to high bicarbonate levels
 - Challenge: Random nature of mutagenesis
- Characterize novel strains

Task 2: Engineering of *N. oceanica* for enhanced carbon uptake

- CCM Engineering in *N. oceanica*
 - Challenge: Unstable transformants
- Strain adaptation to high bicarbonate levels
 - Challenge: Random nature of mutagenesis
- Characterize novel strains
- Milestone 2.1.1: Show expression of a reporter protein such as YFP in at least two separate transformation events.
- Go/No-Go: At least one developed variant of *N. oceanica* demonstrates at least 20% higher growth in laboratory-based high bicarbonate environments relative to parent strain.

Task 3: System integration, deployment, and validation

- Determine optimal carbon introduction location to raceway pond
- Develop and test system for gas-phase CO₂ monitoring and control
- Evaluate performance of C delivery and strain uptake
- Engineering process modeling
- Concurrent TEA and LCA

Task 3: System integration, deployment, and validation

- Determine optimal carbon introduction location to raceway pond
- Develop and test system for gas-phase CO₂ monitoring and control
- Evaluate performance of C delivery and strain uptake
- Engineering process modeling
- Concurrent TEA and LCA

Go/No-Go: Demonstration of 25% increase in baseline inorganic carbon utilization efficiency over a 6-week continuous cultivation demonstration run at QH test site and 20% growth rate increase in the integrated systems at CSU and NREL.

3 – Impact

- Increased CUE
 - Purchased CO₂ is major expense, yet nearly >85% is wasted
 - Project goal is >60% CUE
- Increased productivity
 - Major BETO strategy to achieve \$2.50/GGE
 - Project goal is 20% baseline

3 – Impact

- Increased CUE
- Increased productivity
- Engagement with QH is extremely valuable
 - Realistic baseline and conditions
 - Feedback on approach
- Project provides value to QH
 - Technology for iC delivery
 - Flow modeling
- Dissemination
 - Planned publications and patents

Foteini Davrazou, Deanne Sammond, Lieve Laurens (NREL)

- Task 1: Membrane system for efficient transfer of CO₂ to water
 - Highly active CA variants identified

- Task 1: Membrane system for efficient transfer of CO₂ to water
 - Highly active CA variants identified
 - Lab-scale membrane modules developed with milestone flux

- Task 1: Membrane system for efficient transfer of CO₂ to water
 - Highly active CA variants identified
 - Lab-scale membrane modules developed with milestone flux
 - All milestones achieved

- Task 2: Engineering of *N. oceanica* for enhanced carbon uptake
 - Engineered carbon concentrating mechanism mutant
 - Stable
 - Demonstrated 29% average increase in specific growth rate over WT in elevated CO₂ conditions

- Task 2: Engineering of *N. oceanica* for enhanced carbon uptake
 - Engineered carbon concentrating mechanism mutant
 - Stable
 - Demonstrated 29% average increase in specific growth rate over WT in elevated CO₂ conditions
 - Genome sequenced and annotated
 - Go/No-Go milestone achieved

- Task 3: System integration, deployment, and validation
 - Computational fluid dynamics model matches mixing and growth;
 predicts best locations for iC stream injection

Damien Douchi, Foteini Davrazou, Bonnie Panczak, Alicia Sowell, Mauro Lua, Nick Sweeney, Kaitlin Lesco, Lieve Laurens (NREL)

- Task 3: System integration, deployment, and validation
 - Computational fluid dynamics model matches mixing and growth;
 predicts best locations for iC stream injection
 - C tracking system for ponds developed and applied

- Task 3: System integration, deployment, and validation
 - Computational fluid dynamics model matches mixing and growth;
 predicts best locations for iC stream injection
 - C tracking system for ponds developed and applied
 - Process model developed to integrate system components

Summary

- Important technical goals achieved
 - Improved enzyme variants
 - Improved N. oceanica strain
 - CFD and process models developed
- Moving to system integration and evaluation
- Schedule delays owing to COVID-19 shutdowns/restrictions;
 otherwise on track

Quad Chart Overview

Timeline

- 10/01/2019
- 3/31/2022 (NCE)

	FY20 Costed	Total Award
DOE Funding	(10/01/2019 – 9/30/2020) \$799,490	(negotiated total federal share) \$2,145,600
Project Cost Share	\$267,940	\$752,018

Project Goal

The goal of this project is to increase CUE and productivity through development and application of a novel enzymatic membrane transfer system and a faster-growing variant of *Nannochloropsis* oceanica.

End of Project Milestone

Demonstration of 25% increase in baseline inorganic carbon utilization efficiency over a 6-week continuous cultivation demonstration run at QH test site (mini-ponds plus membrane module plus CO₂ monitoring) and 20% growth rate increase in integrated systems at CSU and NREL.

Project Partners

NREL

- New Belgium Brewing
- Qualitas Health

Funding Mechanism

DE-FOA-0001908, Efficient Carbon Utilization in Algal Systems

Topic Area 1 – CO₂ Utilization within Algae Cultivation Systems

Project Team

Colorado State University

Jaclyn Adkins, Travis Bailey, Jonah Greene, Tessema Kassaw, Boston Morris, Seijin Park, Graham Peers, Kennalyn Peterson, Jason Quinn, Ken Reardon, Chen Shen, Maxwell Ware

National Renewable Energy Laboratory

Ryan Davis, Foteini Davrazou, Damien Douchi, Bruno Klein, Lieve Laurens, Kaitlin Lesco, Mauro Lua, Bonnie Panczak, Deanne Sammond, Alicia Sowell, Nick Sweeney

Los Alamos National Laboratory

Blake Hovde, Shawn Starkenburg

Qualitas Health

Jake Nalley, Eneko Ganuza

New Belgium Brewing

Chris Keogan, Shane Roberts

Additional Slides

Responses to Previous Reviewers' Comments

- Go/No-Go (Interim Verification) Review
 - Delayed 4 months by COVID-19 pandemic
 - Held on January 15, 2021
 - All milestones accomplished
 - Approved for BP3

Publications, Patents, Presentations, Awards, and Commercialization

- NREL Laboratory Analytical Procedure: "Determination of Total, Organic, and Inorganic Carbon in Biological Cultures in Liquid Fraction Process Samples" (https://www.nrel.gov/docs/fy21osti/78622.pdf)
- Publications in preparation include:
 - Carbonic anhydrase engineering
 - CCM engineering
 - N. oceanica genome sequencing and annotation
 - Algae cultivation computational fluid dynamics modeling
 - iC measurement system design and application
 - Engineering process modeling

Activity Retention of Carbonic Anhydrase Variant at pH 6

10ppt NaCl

35ppt NaCl

- Sequencing and annotation
 - Genome is 30.96 Mbp
 - 3144 scaffolds
 - 1546 scaffolds >1000 bp
 - Paired end-read Illumina sequencing
 - 3.94M reads; 118kM bases

Seijin Park, Ken Reardon, Graham Peers (CSU) Shawn Starkenburg, Blake Hovde, (LANL)

Sequencing and annotation

Seijin Park, Ken Reardon, Graham Peers (CSU) Shawn Starkenburg, Blake Hovde, (LANL)

	IMET1 (2014)	LANL-CSU (2020)
entries	9915	11131
unknown function	9915	4958

Case Number	Standard Deviation of HCO3 Concentration			
1	0.001499			
2	0.001537			
3	0.001512			
4	0.001629			
5	0.001648			
6	0.001583			
<mark>7</mark>	0.001417			
8	0.001534			
9	0.001596			
<mark>10</mark>	0.001490			

Improved Carbon Budget in Ponds: Medium composition and pH affect efficiency of CUE

Damien Douchi, Foteini Davrazou, Bonnie Panczak, Alicia Sowell, Mauro Lua, Nick Sweeney, Kaitlin Lesco, Lieve Laurens (NREL)

