Carbon Utilization Efficiency in Marine Algae Biofuel
Production Systems Through Loss Minimization and
Carbonate Chemistry Modification

Zackary Johnson

March 2021
Algae Platform Review

DOE Bioenergy Technologies Office (BETO)
2021 Project Peer Review

This presentation does not contain any proprietary, confidential, or otherwise restricted information

E i Duke NICHOLAS SCHOOL OF THE m

ENVIRONMENT \‘:

WBS 1.3.2.440

blﬁ



Project Overview

This team grew out of ongoing work with MAGIC (WBS 1.3.5.310), but represents a
smaller group with one new member who brings specialized experience

Our focus here is to build on substantial team experience associated with outdoor algae
cultivation and TEA/LCA of algae biofuels to develop and test approaches to minimize
CO, use and losses and to enhance overall algae productivity

Our goal:

Success means improved algae biofuel economics and broader siting potential
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1 — Management (Structure)

Duk ﬂ Task 2: Cultivation / Strain assessment
UNIVERSITY K | Task 4: Integration / Demonstration

Task 3: CO, conversion
Task 4: Integration / Demonstration

Task 5: TEA/LCA g System Modeling

Maijor project risks: (1) performance of algae, (2) performance of converter, (3)
uneven progress

* Monthly all consortium calls,
weekly within task meetings
(other topic meetings in
between)

« Basecamp project management
(calendar, tasks, shared
documents, etc.)

» Tasks and Milestones in SOPO
(identify responsible party) and
include SMART goals

» Group decisions by consensus

* Prime (Duke) has final
responsibility
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2 - Approach — Major Tasks

Goal: Demonstrate enhanced algal growth on high DIC water at industrially relevant
scale with a system that has improved economics and environmental impacts

Task 2: Strain assessment (Cultivation) - 2CO, threshold and
HCO; enhancement

Task 3: CO, conversion CO, to HCO, using CaCO,

Task 4: Demonstration - integrated system, industrially relevant scale
Task 5: TEA/LCA & System Modeling
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3 - Impacts

* Productivity is the #1 driver of the economics of the economics of algae biofuels

— demonstration of productivity enhancement would make algae-derived biofuels
more economically feasible

* (O, limits siting of economically feasible algae biofuel production

— Demonstration of conversion of CO, to HCO,; would provide a CO, “integrator”,
expanding locations

— Demonstration of uncoupling of CO, production and algae use would greatly expand
locations

— Identification of strains that have reduced [2CO,] requirements could greatly reduce
(or even eliminate) the requirement for CO,, greatly expanding locations and
lowering costs |

* Results disseminated through peer-reviewed publications
and other public presentations '
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4 - Progress and Outcomes
Task 2: Strain assessment: ID of strains with reduced pCO, threshold for growth
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Task 2: Strain assessment: Growth (enhancement) on high DIC waters
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Task 3 - CO, Conversion

Task Summary - The goal of this task is to demonstrate the “conversion” of CO, to Ca?* + 2HCO; using CaCO, mineral as a source of DIC with
the hypothesized intent of increasing efficiency and lowering cost of algae culture. This task is based on an existing LLNL/DOE patent, but
importantly has not yet been demonstrated for algae growth. In BP2, this task will involve construction of a pilot scale converter for testing with
small scale (~100 L) raceway ponds.

Subtask 3.1: CO, conversion in lab/pilot (Q2-Q4)
A prototype CO, conversion system will be built in the laboratory and optimized to convert CO2 to HCO, using CaCO;. This system will be
optimized (in absence of algae) and delivered for trials for subtask 4.1

Milestone 3.1.1 CO, conversion in lab/pilot — start construction (m, Q3)
Milestone 3.1.2 CO, conversion in lab/pilot — working prototype (DP, Q4)
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Task 3: Concept background

Spontaneous reaction under elevated CO, (Rau and Caldeira 1999, etc.):
CO, + H,O(sw) + CaCO;, (limestone) ----- > Ca?* + 2HCO; (+ CO5 + CO,)
with the intent of capturing and storing CO, from point sources
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(from: Rau, Environmental Science and Technology, 2011) initial
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So, could the high DIC seawater generated be used for
cost-effectively supplying algal C substrate? Duke i g
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Task 3: DIC Modeling

Significant gain in DIC expected per amount of CO, added and pH achieved,
relative to straight CO, bubbling:

DIC Gain/Loss vs pCO2 pH vs DIC
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Modeled DIC concentrations at equilibrium with a given pCO,, and thus pH, with and
without the presence of CaCO;. Trajectories of DIC gain followed by CO, loss
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Task 3: DIC Generation Experiments

Various schemes used for initial DIC generation at lab scale

Lab-Scale CO,/Carbonate Batch Reactor

10-100% CO, purge
to given pH, then air
purge to equilibrium

Tubing —

Plastic bucket,
5 gal. +/- vented lid

p— g

Seawater — |

Pre-weighed carbonate particles
in punched-out, screen-lined
plastic, juice pitcher or similar.

CO,
depleted
gas

— :

Air stone

Post-reaction water
removal, pH, DIC, TALK
analysis, storage

Subsample and dilute
with fresh SW to desired
DIC

Algae lab incubations

10.20.20

0 50 100

—e—pH —a—DIC

High-DIC SW Generation

150
Time (mins)

DIC (umM)

Generation of air stable >20mM %CO,
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Task 4: Integration

Collection of commercial brewery CO,, converting to high DIC solution, growing algae

RMENTATION
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4 kg of grain lost ~35% of mass in sugars 2> ~0.5 kg C

Prototyped a “femtoscale brewery”, quantified CO, release, achieved mass balance with inputs

Next steps: collection / conversion of CO,; trial algae growth
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Task 5: Commercialization Analysis (TEA/LCA) - GOALS

Task 5 — TEA/LCA (B&D and Bucknell)
The overall goal of this task is to ground experimental data in a larger commercialization and biofuel development framework to evaluate
economic and environmental performance.

TEA/LCA efforts will focus on integrating CO, threshold reductions and CO, conversion results for algae grown at ~5000 L scale for end-to-
end demonstration (CO, waste stream to algae growth).

Milestones: Pending Final Results from Tasks 2 and 4

5.1.1 TEA/LCA integration of milestone 2.1.2 (strain assessment) data (DP, Q6)
5.2.1 TEA/LCA integration of milestone 4.1.1 data (DP, Q6)

5.3.1 TEA/LCA integration of milestone 4.2.2 data - end (MS, Q12)

5.4.1 TEA/LCA integration of milestone 4.3.1 data - end (MS, Q12)
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Task 5: Commercialization Analysis (TEA/LCA) - RESULTS
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Task 5: Commercialization Analysis (TEA/LCA) - Ongoing
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Modeling carbonate chemistry with algal growth (Bucknell) - .
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pH CM. Beal et al. / Algal Research 10 (2015) 266-279
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Beal et al., 2015
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Minimum Biocrude Sale Price ($/L)
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MAGIC-C(ircular Carbon) Summary

Task 2

+ Demonstration of algae strains that grow under reduced
2CO, environments - reduced CO, losses

+ Demonstration of algae uptake and growth on converted
carbon -> reduced CO, losses, enhanced growth

Task 3

+ Demonstration of high DIC waters from CO, + limestone
reactor

* Modeling of improved high DIC generation process

Task 4

+ Demonstration of biogenic CO, production and quantification
(with mass balance)

Task 5

»  Working model of carbonate chemistry with/without algae

* Process model of algae facility incorporating DIC generation
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MAGIC-C (EE0O008518) - Quad Chart Overview

$183,243  $1,511,515

- $37.395  $416,780 (22%)
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Thank you

zii@duke.edu

We're a team!

EERE #DE-EE0008518

Bucknel DUI(C
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http://www.ml.duke.edu/webcam/algae
http://www.duke.edu/~zij
mailto:zij@duke.edu

Additional Slides
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Patents, Awards, and Commercialization

No patents have been applied for based on the work supported by DOE.
No special awards have been received.

All primary results from this project are being published in the open, peer-reviewed literature. The
publications from this project — cited above — provide a comprehensive and detailed analysis of
commercialization potential. This information will be available to anyone with access to the open literature.
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