

DOE Bioenergy Technologies Office (BETO) 2021 Project Peer Review

Small Scale Decentralized Fuel Production Facilities via Advanced Heat Exchanger-Enabled Biorefineries DOE Award EE0007964

- March 25, 2021
- Systems Development and Integration
- Ravi Chandran
- TRI

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

- DE-FOA-0001232 2016 Project Development for Pilot Scale manufacturing of Biofuels
- Project Goals:
 - Design and develop a 2nd generation integrated biorefinery capable of
 - > Distributed small scale biofuel production based on process intensification
 - > Enhanced biofuel yield per ton of cellulosic biomass
 - Lower Capex and Opex, and
 - > Wide deployment
 - Meet DOE/EERE/BETO objectives
 - > Dramatically reduce dependence on imported oil
 - > Spur the creation of domestic bio-industry
 - Target drop-in cellulosic biofuel cost < \$2/GGE
- Risks:
 - Brownfield installation integration of new components with existing TRI Process Demo. Unit
 - Contingency reserve requirement

1 – Management

- Management approach:
 - Stage Gate method with a Steering Committee (one Executive from each team member) review at the first level and the DOE (and the Independent Engineers) review at the second level for Go/No Go decision
 - Critical success criteria or key technical achievements formulated for each stage so that the project meets or exceeds a minimum hurdle rate to proceed forward
 - Task based milestones to monitor progress
- Project structure:
 - Team comprising TRI, RTI, Velocys, Susteon and InnoSepra
 - TRI technical & Admin POCs for the DOE, Steering Committee, team member leads
 - <u>Task Areas:</u>

TRI: Steam reforming, advanced heater, PDU Integration – testing, validation, design, CFD, CPFD & ASPEN Plus simulations, FEA, scaleup, 3D Modeling, IP management plan
RTI, InnoSepra: CO₂ removal & regeneration - testing, validation, design
Susteon: H₂S/COS and HCN/NH₃ removal - validation, design
Velocys: Microchannel F-T synthesis – testing, validation
Velocys, RTI: FTL upgrading - testing, validation

1 – Management (continued)

- Risk Mitigation:
 - Risk Registry table included in the additional slides which identifies risk and indicates the mitigation strategy and the status

2 – Approach

- Overall technical approach: Design, test and validate the high impact process intensification improvements to "first generation" IBR
 - Experimental validation of individual, new unit ops
 - Run simulations to validate model, scaleup and confirm performance improvement
 - Design, fabricate, install, commission and test the integrated Process Demonstration Unit (PDU) to demonstrate improvements
- Challenges:
 - Design and integration of Advanced Heater to replace existing electrical heaters in the steam reformer
 - Installation and integration of the new components with the existing TRI PDU
 - Biomass preparation for PDU testing
- Go/No Go Decision points:
 - Initial Process and Data Validation for proof of performance successfully completed
 - Syngas production improvement successfully completed
 - Phase 1 project review pending

2 – Approach (continued)

- Metrics used to measure progress:
 - Improvement in heat flux and heat transfer coefficient for the TRI advanced heat exchanger TRI testing and CFD simulations
 - Increase in usable syngas (H₂ + CO) per unit mass of dry feedstock TRI testing and CPFD simulations
 - Syngas CO₂ capture efficiency testing at RTI and InnoSepra
 - Velocys' Microchannel Fischer-Tropsch (F-T) single pass CO conversion Integrated testing by TRI and Velocys
 - F-T liquids upgrading catalyst integrity and performance testing at RTI
 - Structural integrity of TRI advanced heat exchanger detailed finite element analyses
 - Readiness for brownfield installation of new process components at the TRI Process Demonstration Unit – component design and 3D modeling

3 – Impact

- Small scale IBRs with process intensification decrease biomass conversion costs and directly support BETO MYPP goals:
 - Enable sustainable, nationwide production of biofuels compatible with today's transportation infrastructure, reduce greenhouse gas emissions relative to petroleum-derived fuels, and displace a share of petroleum-derived fuels to reduce U.S. dependence on foreign oil
 - Plant size commensurate with economical biomass transportation and distributed biofuel (diesel and naphtha) production
 - Encourage the creation of a new domestic bioenergy and bioproduct industry
- Addresses BETO's 2017 target of <\$2/GGE biofuel cost
- Targets BETO's goal to validate biofuel production at pilot scale (>1 ton/day) by 2022
- Plan to present at domestic and international conferences upon the successful completion of Phase 2 trial as this plant scale can cater to the more common albeit smaller feedstock supply sources and leverage feedstock transportation economics

4 – Progress and Outcomes

- Status of project:
 - TRI advanced heater validation, mechanical design, CFD modeling, Finite Element Analyses and 3D modeling for PDU steam reformer integration – all completed
 - CO₂ removal and regeneration validation and design completed
 - > Velocys' Microchannel F-T unit integration with the TRI PDU and validation completed
 - > NEPA documentation and permitting completed
 - > TRI 2nd gen steam reforming validation, CPFD modeling completed
 - > IP management plan completed
 - Budget for Phase 2* pending
 - Project review and approval to proceed to BP3* pending
 - > 9 milestones and the performance metric go/no go criterion have been met
 - Budget milestone and BP3 go/no go decision are pending

* Proposed combining this project and the feeder project (WBS 3.4.1.201) for Phase 2

4 – Progress and Outcomes (continued)

- Accomplishments:
 - Significant improvement in both heat flux and heat transfer coefficient for the TRI advanced heat exchanger in comparison to both the TRI first generation pulsed heater and the conventional fire-tube – TRI testing and CFD simulations
 - > 25% increase in usable syngas (H₂ + CO) per unit mass of dry feedstock TRI testing and CPFD simulations
 - > 90% syngas CO₂ capture efficiency testing at RTI and InnoSepra
 - > 60% Velocys' Microchannel Fischer-Tropsch (F-T) single pass CO conversion Integrated testing by TRI and Velocys
 - No adverse effect on catalyst integrity and performance while upgrading Velocys' F-T liquids to drop-in fuels – testing at RTI
 - TRI advanced heat exchanger satisfies structural integrity criteria detailed finite element analyses
 - 3D integration of TRI advanced heat exchanger with the existing TRI steam reformer 3D modeling
 - Configuration and location of new process components at the TRI Process Demonstration Unit for brownfield installation – component design and 3D modeling
 - Potential to meet the project goals via preliminary technoeconomic analysis

Summary

- 1. Overview: Second generation IBR for improved economics and wide scale deployment
- 2. Approach: Design, test and validate the high impact process intensification improvements to "first generation" IBR;

Critical success factors:

- > 25% increase in usable syngas (H_2 + CO) per unit mass of dry feedstock
- > 35% decrease in overall Capex of the IBR
- < \$2/GGE Opex of IBR
- 3. Technical Accomplishments/Progress/Results: Successful validation of 5 unit ops in BP1; successful completion of component design, simulations and analyses in BP2; exceeded the syngas yield improvement go/no go criterion
- 4. Relevance: Directly supports BETO's MYPP, 2017 & 2022 goals
- 5. Future work: Construction, PDU Integration and demonstration

Quad Chart Overview

Timeline

- Project start date 1/15/2017
- Project end date 12/15/2023

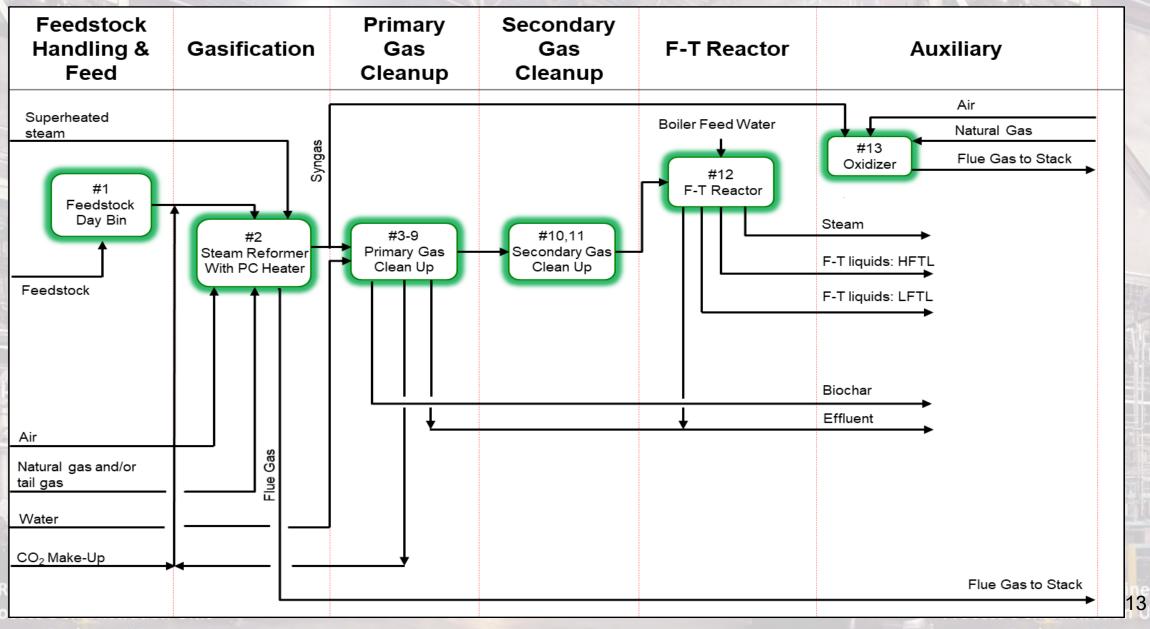
	FY20 Costed	Total Award					
DOE Funding	(10/01/2019 – 9/30/2020)	(negotiated total federal share)					
	\$96,367	\$807,984					
Project Cost Share	\$92,853	\$808,999					

Project Partners

• Velocys, RTI, Susteon, InnoSepra

Project Goal

Design and develop a 2nd generation IBR for distributed biofuel production with enhanced yield at lower Capex & Opex to accelerate IBR deployment


End of Project Milestone

- > 25% increase in usable syngas (H₂ + CO) per unit mass of dry feedstock
- > 35% decrease in overall Capex of the IBR
- < \$2/GGE Opex of IBR

Funding Mechanism FOA No. DE-FOA-0001232 Project Development for Pilot and Demonstration Scale Manufacturing of Biofuels, Bioproducts, and Biopower - 2016

Additional Slides

Process Operations Block Diagram

Risk Registry Table

	Risk Identified		Mitigation Strategy		Current Status				
Risk ID	Process Step	Risk Description	Severity (High/ Med/Low)	Mitigation Response	Action Date	Active/ Closed			
TRI Indirectly heated steam reforming									
1	Modified steam reforming process	Syngas (H ₂ +CO) yield increase	High	Validation trial	10/2017	Closed			
2	Advanced heater	Heat transfer effectiveness	High	Validation trial	10/2017	Closed			
3	Scale-up of 1	Performance	Medium	CPFD simulation	1/2019	Closed			
	Scale-up of 2		High	CFD simulation	10/2019	Closed			
4	PDU Integration	Brownfield installation	Medium	3D Modeling	2/2019	Closed			
RTI/InnoSepra CO ₂ capture and regeneration									
1	From syngas	> 90% capture	High	Validation trial	10/2017	Closed			
2	PDU Integration	Brownfield installation	Medium	3D Modeling	10/2019	Closed			
						14			

Risk Registry Table (continued)

		Risk Identified		Mitigation Strategy		Current Status			
Risk ID	Process Step	Risk Description	Severity (High/ Med/Low)	Mitigation Response	Planned Action Date	Active/ Closed			
Velocys Microchannel F-T									
1	FT synthesis	Performance	Medium	Validation trial	3/2018	Closed			
2	PDU Integration	Brownfield installation	Medium	Installed and operated	3/2018	Closed			
F-T upgrading									
1	Diesel and Naphtha	Catalyst integrity and performance	Medium	Validation trial	3/2018	Closed			
						tegrated BioRefi s Demonstration			

Responses to Previous Reviewers' Comments

 This project was peer reviewed in 2019 and the reviewers' comments were all positive and complimentary

Publications, Patents, Presentations, Awards, and Commercialization

- No publications, patents, awards, and presentations have resulted from work on this project
- Commercialization of this technology will benefit from the maturation of large scale IBRs