

DOE Bioenergy Technologies Office (BETO) 2021 Project Peer Review

Membrane Carbonation (MC) for 100% Efficient

Delivery of Industrial CO₂ Gases

Technology Area Session: Advanced Algal Systems Date: March 23, 2021 Principal Investigator: Bruce Rittmann Organization: Arizona State University

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Biogas Purification

Bottlenecks in CO₂ Delivery to Algae

- Growth is limited by ~400 ppm CO₂ in atmosphere
- Trucked CO₂ is expensive,
 ≥ \$200/ton
- Industrial CO₂ gas varies widely by source
- Sparging CO₂ can release 60-80% back to atmosphere
- Industrial waste gas may have contaminants
- Industrial waste gas may have other valuable components

Project Overview

• **Goal:** Outdoor demonstration of MC using biogas, flue gas with > 25% improvement in carbon utilization efficiency (CUE) over sparging

Benefits

- Efficient CO₂ capture into biomass from a wide range of sources
- CO₂ selectively removed to increase value of residual gas (e.g., CH₄)
- Bubble-free CO₂ delivery: >90% to media, >70% to biomass

Biodesign Institute

ISTB-5

External Partners

AzCATI

City of Mesa

1 - Management

Management

Bruce Rittmann Principal Investigator

Justin Flory Project Manager

Risks and Mitigation

- Inert gas builds up: use bleed value to purge inert gases
- > Non-selective CO₂ transfer in mixed gas: mathematical modeling (Excel, COMSOL)
- Not cost-effective or sustainable: technoeconomic and life-cycle modeling

Indoor cultivation and modeling

Rosa Krajmalnik -Brown co-Pl

Yen-Jung Michelle Young Research Scientist

Lai

co-Pl

Zoe Frias Undergrad student

John **McGowen** co-Pl

Outdoor Cultivation

TEA and LCA

TEA

Jason Quinn LCA

Everett Eustance Stirling Research **Scientist**

2 - Approach

Technical Approach

- Abiotic evaluation of synthetic gases with 5–80% CO₂ in mildly alkaline media, focused on flue gas [5, 14% CO₂], biogas [35% CO₂]
- Biotic evaluation at lab scale of synthetic flue gas and biogas. Include CH₄ and H₂S in biogas. Down select conditions for outdoors
- Outdoor cultivation of synthetic flue gas and biogas over multiple seasons, increasing complexity and scale (e.g., synthetic gas to raw biogas and 4-m² to 25-m² raceways)

- Mathematical modeling to track multiple gas components and optimize experimental conditions (Excel and COMSOL)
- Techno-economic and life-cycle analyses to guide research and assess economic and sustainability goals (renewable fuel standard)

Challenges

CO₂ off-gassing at pH < 8 reduces carbon utilization efficiency</p>

> As this was significant, we are increasing pH in subsequent trials

Lower flux with flue gas

> Assessing impact with techno-economic and life-cycle modeling

> Achieving \geq 97% CH₄ purity in effluent when cultivating with biogas

 \succ Observed O₂ back diffusion and CH₄ transfer to media

Go/No-Go @ Month 21 [actual results]

- ➤ Cultivation with initial MC delivering synthetic bio and flue gas for
 ≥ 3 weeks with ≥ 60% carbon transfer efficiency (CTE) [86–97%]
 and ≥ 50% carbon utilization efficiency (CUE) [54–79%] and ≥5%
 [10%] productivity over SOT and CH₄ purity of ≥ 80% [83–95%]
- MC process can deliver CO₂ for cultivation for ≤ \$102/ton [\$73/ton] assuming a cost of \$50/ton CO₂ as described in the TechFin worksheet key performance parameter for Cost of CO₂

3 - Impacts

- ➤ Improve carbon transfer and utilization efficiency (CTE/CUE) from \leq 40–50% and \leq 30–50% for sparging to \geq 90% and \geq 80% with MC.
- > Increase CH₄ purity in biogas from ~65% to ≥ 97% (i.e., biomethane)
- ➤ Increase biomass productivity by ≥ 10% over 2018 SOT
- > Savings vs sparging: \leq \$60/ton CO₂ delivered at \$50/ton CO₂ cost
- Demonstrate feasibility in 4 m² and 25 m² raceway ponds
- > On-site demo. at City of Mesa Wastewater Treatment Plant:

- Increase value of Mesa biogas to run generator or produce renewable fuels (vs flare)
- Onsite water and nutrients
- Peer-reviewed reports to evaluate TEA, LCA and technical feasibility of MC
- Patent filed on Mar. 4, 2020

4 – Progress and Outcomes

CO₂₋delivery approach for biotic and abiotic testing at lab scale

> Abiotic evaluation at lab scale

- > Flux target ≥ 250 g d⁻¹ m⁻² (fiber) met for 14% flue gas and above
- Increase flow restriction to achieve higher CTE
- Biotic evaluation at lab scale
 - Productivity with biogas and flue gas was similar to 100% CO₂
 - >97% CTE (transfer), 65–67% CUE (utilization)

Mathematical Modeling

Excel Model

- Mass balance
- Inform fiber-module design
- Validated, within <5% of experimental data

COMSOL Model

- Physical model of gas transfer
- Encompasses more phenomena
- Especially valuable to optimize biogas delivery

Outdoor Cultivation

4.2 m² raceways at AzCATI

MC module

- Picochlorum celery (Pico) cultivated > 3 weeks with synthetic flue gas, biogas, and 100% CO₂ at pH 7.0 and 7.75
- CTE: 86–98% vs 40–50% for sparging
- CUE: 54–79% vs 30–50% for sparging
- Significant off-gassing at pH
 7.0 and 7.75, which is below
 equilibrium with air (pH ~8.2)
- Biogas effluent CH₄ purity 83–95%

4 – Progress and Outcomes

Techno-economic analysis (TEA)

- Focus on cost of delivering CO₂ with MC vs sparging
- Key factors: CO₂ supply cost and compression; and membrane flux (g/m²/d), cost (\$/m²), and lifetime.

Life cycle analysis (LCA)

- Focus on LCA of delivering CO₂ with MC vs sparging
- Impact of MC insignificant vs impacts of productivity, HTL yield, and dewatering.
- Greenhouse gas emissions: ~30 gCO₂-eq/MJ, which meets the renewable fuel standard (RFS) of < 45 gCO_{2-eq}/MJ
- Biogas methane leaks insignificant at expected levels

Biogas CH₄ purification systems

5 – Summary

Membrane Carbonation for CO₂ delivery

- CTE: 86–98% vs 40–50% for sparging
 - Significant **cost savings** vs sparging; \$73/ton
- > CUE: 54–79% vs 30–50% for sparging

Significant off-gassing at pH < 8</p>

- Biogas effluent CH₄ purity 83–95% (field values)
 - Significant cost savings vs commercial system
- COMSOL and Excel models developed
- Life-cycle analysis shows will meet renewable fuels standard

On-site demonstration at City of Mesa Wastewater Treatment Plant

Membrane Carbonation | ASU | Rittmann

Timeline

- Project start date: Jan 1, 2019
- Project end date: Dec. 31, 2021

	FY20 Costed	Total Award
DOE Funding	\$712,766	\$1,992,766
Project Cost Share	\$341,545	\$498,205

Project Partners

- Sustainability Science LLC (LCA)
- City of Mesa (biogas advisor/provider)
- Salt River Project (flue advisor)

Funding Mechanism

DE-FOA-0001908, Efficient Carbon Utilization in Algal Systems, 2018 Topic Area 1: CO2 Utilization Efficiency

Project Goal

Outdoor demonstration of membrane carbonation using biogas, flue gas with > 25% improvement in carbon utilization efficiency over sparging.

End of Project Milestones

- ➤ Improve carbon transfer and utilization efficiency (CTE/CUE) from 40–50% and 30–50% for sparging to ≥ 90% and ≥ 80% with MC
- Increase CH₄ purity in biogas from 65% to > 97% (i.e., biomethane)
- ➢ Increase biomass productivity by
 ≥ 10% over 2018 SOT
- > ≤ \$60/ton CO_2 delivered (\$50/ton CO_2 cost); >> savings vs sparging
- Enable algal biofuels that meet the renewable fuels standard

Additional Slides

Responses to Reviewer Comments

2019 Peer Review Comments

Poster presentation, no comments

Go / No-Go Review Highlights

- Monitor membrane fouling impact on performance: will complete in next trial
- Purge condensed water from 'wet' biogas: fiber ends are partially open, may need to periodically purge with dry gas
- > Optimize CUE beyond delivery: will increase pH to around 8
- Improve estimates for membrane lifetime: membrane lifetime reduced from 10 years to 6 years for TEA
- Update TEA / LCA models with experimental data: process is ongoing and iterative; detailing product costs for first customer

Publications, Patents & Presentations

Publications

- Lai YS, Eustance E, Shesh T, Rittmann BE (2020) Enhanced carbon-transfer and utilization efficiencies achieved using membrane carbonation with gas sources having a range of CO2 concentrations. Algal Research (52)
- Eustance E, Lai YS, Shesh T, Rittmann BE (2020) Improved CO₂ utilization efficiency using membrane carbonation in outdoor raceways. Algal Research (51)

Presentations

- Eustance E, Lai YS, Flory J, McGowen J, Rittmann, BE. Presentation at Algae Biomass Summit 2020, Virtual. Utilizing Membrane Carbonation with Synthetic Flue Gas and Biogas in Outdoor Raceways.
- Rittmann, B. E. (2020). Highly Efficient CO₂ Delivery from Industrial Sources. Presentation at the Algae Biomas Summit 2020 (August 20).
- Bruce Rittmann, "Opportunities in Microbial Bioenergy" Guest lecture, Arizona State University, Tempe, AZ. Nov. 12, 2019
- Bruce Rittmann, "Optimizing Microalgae Production by Delivering Sources of Concentrated CO₂" IWA Microalgae Conference, Vallodolid, Spain. July 2, 2019
- Bruce Rittmann, "Optimizing Microalgae Production by Delivering Sources of Concentrated CO₂" Gordon Research Conference on Photosynthesis, Newry, ME

Patents

- Methods and Systems for Membrane Carbonation; Everett Eustance, Bruce Rittmann,
- ¹⁸ Yen-Jung Lai, Justin Flory, Tarun Shesh, Diana Calvo; Mar. 4, 2020. No. 16/809,384.