A comprehensive strategy for stable, high productivity cultivation of microalgae with controllable biomass composition
Project Overview

Context: This project builds upon previous collaborative work of project participants for isolating and characterizing high productivity alkaliphilic algal strains.

Overall Goal: Develop cultivation approaches that use high-pH and high-alkalinity media for (1) high rates of atmospheric CO₂ capture and (2) providing non-limiting HCO₃⁻ concentrations for growth.

Specific Objectives:
1. Improve scale and productivity of alkaliphilic cultures cultivated in high-pH and high-alkalinity media.
 - Establish seasonal productivities and the influence of scale-up
2. Improve biomass composition
 - Media and cultivation conditions optimization for higher carbohydrate and lipid content
3. Develop molecular biology toolkits
 - Novel gene editing, microbial ecology and metabolic flux modeling tools
 - Not yet available for diverse microalgae
 - Technically risky, but have the potential to significantly improve culture performance
1 - Management

Team
- Sridhar Viamajala: Cultivation and scale-up
- Robin Gerlach: C and nutrient management
- Matthew Fields: Microbial ecology
- Blake Wiedenheft: Gene editing
- Ross Carlson: Metabolic flux modeling
- Brent Peyton: Cultivation and scale-up
- Greg Characklis: TEA and LCA
- Jordan Kern: TEA and LCA

Risk identification/mitigation via team interactions and external collaborations
- Biweekly team conference calls, annual team meetings at ABS, numerous phone/email conversations
- Cross-disciplinary discussions on technical challenges and potential solution approaches
- Sample analyses and culture(s) maintenance at multiple locations
- Critical experiments repeated at multiple locations
- Team is well connected with the algal biofuels community
 - Numerous ad hoc conversations with industry and other algal researchers on specific technical issues

Formal external collaborations
- PNNL-EMSL via Facilities Integrating Collaborations for User Science (FICUS) project
- Joint Genome Institute (JGI) via the Community Sequencing Program (CSP)
- LANL (Shawn Starkenburg) through CSP supplemental funding

~6 month-delays experienced due to CoVid-19 pandemic
2 - Approach
Facilitating high rates of atmospheric CO₂ capture

\[J_{CO_2} = k_L \cdot E \cdot \left([CO^{\bullet}_{2(aq)}] - [CO^{bulk}_{2(aq)}] \right) \]

Mass transfer flux:

- \(P_{CO_2(g)} = 3.87 \times 10^{-4} \text{ atm} \)
- \(CO^{\bullet}_{2(g)} = 1.32 \times 10^{-5} \text{ mol/L} \)

\(CO^{\bullet}_{2(aq)} = \) Dissolved CO₂ concentration in equilibrium with the atmosphere; calculated from Henry’s constant.

\([CO^{bulk}_{2(aq)}] = \) Aqueous CO₂ concentration; determined by the equilibrium established with HCO\(_3^-\), OH\(^-\) and CO\(_3^{2-}\) in the medium (Eq. 1 & 2)

\[
\frac{k_2}{k_1} \times \frac{[HCO_3^-]^2}{[CO_3^{2-}]}
\]

\(k_L = \) Mass transfer coefficient; governed by mixing rates and pond depth

= 0.1 m/h for 20 cm ponds mixed at 30 cm/s

\(E = \) Enhancement factor for mass transfer due to chemical reaction;

\[
1 + \frac{D_{OH^-} \cdot D_{HCO_3^-} \cdot K_1 \cdot [OH^-]}{D_{CO_2} (K_1 \cdot [CO^{\bullet}_{2(aq)}] + D_{HCO_3^-} + D_{OH^-})}
\]

where, the subscripted \(D \)'s represent diffusion coefficients of the various dissolved species

Abiotic reactions:

1. \(CO_{2, dissolved} + OH^- \rightleftharpoons HCO_3^-_{, media}; \)
 \(K_{Eq,1} = 4.5 \times 10^7 \frac{L}{\text{mol}} \)

2. \(HCO_3^-_{, media} + OH^- \rightleftharpoons CO_3^{2-}_{, media} + H_2O; \)
 \(K_{Eq,2} = 4.9 \times 10^3 \frac{L}{\text{mol}} \)

Biotic reaction:

3. \(HCO_3^- \rightarrow CO_2_{fixed} + OH^- \)

2 - Approach

Maintaining non-limiting HCO₃⁻ concentrations in media for photosynthesis

- Under highly alkaline conditions, DIC is transported by CCMs
- High media DIC increases rate of cellular DIC transport
- Simultaneously, the high cellular DIC flux allows light dependent reactions towards higher production of NADPH for use in carbon fixation.

Vadlamani, A. et al. (2019). High Productivity Cultivation of Microalgae without Concentrated CO₂ Input. ACS Sustainable Chemistry & Engineering, 7: 1933-1943. DOI: 10.1021/acssuschemeng.8b04094
2 - Approach

- Project approach is guided by TEA and LCA
 - Algae production costs can be lowered by ~25% if the approach is successful
 - Prevention of culture crashes using our approach improves average annual productivity
 - Our approach allows sustainable use of low-quality land and water
- Successful application of molecular toolkits could further improve productivity, composition and robustness, but is technically challenging
- Metrics
 - GGE/acre/yr – biofuel productivity by CAP method
 - Fall season –
 (i) Baseline – 1100, (ii) Intermediate/Current – 1500, End of project – 1900
 - GGE/ton – biomass quality by CAP method
 - Fall season –
- Go/No-Go decision points
 - GNG 2: Demonstrate the potential for production of >1200 GGE/acre/year (Q7)
 - Successfully completed milestone verification
3 – Impact

• When successful, the project will
 – De-couple microalgae biofuels production from CO₂ sources and significantly expand possible geographical locations for cultivation
 – Decrease the cost of microalgae cultivation
 – Develop diverse toolkits for broad use by the microalgae community
 • Algae community analysis/dynamics – To assess and control the structure of stable microbial communities that contribute to productivity
 • Transcriptomic and metabolomic analysis – To map and ultimately control the responses of microalgae cultures to cultivation process inputs
 • Metabolic network model – To predict genome editing targets in-silico
 • CRISPR/Cas9-based genome editing – To improve carbon flow to biofuel and bioproduct precursors
• Directly supports BETO’s goals
 – Increase the mature modeled value of cultivated algal biomass by 30% over the 2015 SOT baseline.
 – Develop strain improvement toolkits that enable algae biomass compositions in environmental simulation cultivation conditions that represent an energy content and convertibility of 80 GGE of advanced biofuel per AFDW ton of algae biomass.
• 2 peer-reviewed articles published, several others in various stages of preparation.
4 – Progress and Outcomes

Task 1 - Productivity and composition improvements through improvements in cultivation methods

<table>
<thead>
<tr>
<th>Milestone</th>
<th>1.1.1</th>
<th>Establish baseline cultivation productivity.</th>
<th>Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Go/No-go decision point</td>
<td>Go/No-Go Decision Point #2</td>
<td>Demonstrate the potential for production of >1200 GGE/acre/year</td>
<td>Q7</td>
</tr>
<tr>
<td>Milestone</td>
<td>1.1.2</td>
<td>Obtain multi season phototrophic cultivation productivity data (ongoing)</td>
<td>Q8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Season</th>
<th>Vol.</th>
<th>Area, m²</th>
<th>AFDW prod., g/m²/d</th>
<th>Protein, wt%</th>
<th>Carb, wt%</th>
<th>Lipids, wt%</th>
<th>GGE/ac/yr, CAP</th>
<th>GGE/ton</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>218 L</td>
<td>0.91</td>
<td>17.1</td>
<td>42.7</td>
<td>23.1</td>
<td>10.3</td>
<td>1400</td>
<td>60</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>1100 L</td>
<td>4.2</td>
<td>9.62</td>
<td>15.8</td>
<td>46.4</td>
<td>18.4</td>
<td>1430</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1100 L</td>
<td>4.2</td>
<td>16.4</td>
<td>30.1</td>
<td>27.4</td>
<td>23.9</td>
<td>2370</td>
<td>100</td>
<td>12</td>
</tr>
</tbody>
</table>

Productivities in 0.2 m² raceway cultivations
4 – Progress and Outcomes

Task 2 - Development of a process model describing inorganic carbon mass transfer in high alkalinity cultivation media

<table>
<thead>
<tr>
<th>Milestone</th>
<th>2.1.1</th>
<th>Develop and validate baseline isothermal model for CO₂ mass transfer in alkaline media</th>
<th>Q2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milestone</td>
<td>2.2.1</td>
<td>Develop and validate comprehensive CO₂ mass transfer model for non-isothermal conditions in the presence of a rate promoter (i.e. borate)</td>
<td>Q6</td>
</tr>
</tbody>
</table>

- Use the total alkalinity concentration to solve \([HCO_3^-]\) and \([CO_3^{2-}]\) in terms of \([OH^-]\)

\[
TA = [HCO_3^-] + 2[CO_3^{2-}] + [OH^-] - [H^+]
\]

- Substitute into DIC equation

\[
DIC = [HCO_3^-] + [CO_3^{2-}] + [CO_2]
\]

- Differentiate DIC with respect to time; assume all DIC change comes from CO₂ uptake; Set equal to CO₂ mass transfer equation

\[
\frac{d[CO_2]}{dt} = \frac{dDIC}{dt} = \frac{d([HCO_3^-] + [CO_3^{2-}] + [CO_2])}{dt} = k_La \cdot E_1 \left([CO_2^*(aq)] - [CO_2 \text{ bulk} (aq)] \right)
\]
4 – Progress and Outcomes

Task 3 - Understanding algal community dynamics for increased culture stability, productivity, and enhanced biomass collection in alkaliphilic algal production systems

Milestone 3.1.1 Identify microbial populations in SLA-04 cultures – Q6
Milestone 3.2.1: Determine active microbial populations that develop in the outdoor SLA-04 cultures. – Q9

Labeling of active bacterial members using BONCAT

Challenges:
- Algal cells have low permeability for the BONCAT dye.
- Chlorophyll autofluorescence interferes with detection of Raman signal.

Have > 19 phylogenetically characterized, bacterial isolates from SLA-04 cultures.

Community and activity data will support metabolic model development (Task 5)
4 – Progress and Outcomes

Task 4 - Transcriptomic and metabolomic analysis to map and ultimately control the response of alkaliphilic cultures

Milestone 4.1.1. & 4.1.2: Sequenced, annotated and improved (through transcriptomic work) SLA-04 genome assembly. – Q9

Working towards M 4.2.1 (Q10): Genes expressed in high-productivity populations & M 4.2.2 (Q12): Transcriptome at optimal conditions.

Additional transcriptome data will improve metabolic model (Task 5) and will predict genome editing targets (Task 6)
Elementary flux mode analysis is being used to predict preferred electron sinks under combined light and pH stress. Here, the model predicts that TAGs are preferably produced at high pH (low cost of protons) and low light.

Milestone 5.1.1: In silico reconstruction of SLA-04 metabolic potential with partitioning of activity between cytosol, mitochondria and plastids. - Q8

Each reaction is assigned to a compartment using subscripts. The subscript "m" denotes the mitochondria; the subscript "c" denotes the cytosol.

\[
1 \text{ succinate}_m + 1 \text{ oxQ}_m = 1 \text{ fumarate}_m + 1 \text{ redQ}_m
\]

\[
1 \text{ a-D-glucose-6-phosphate}_c = 1 \text{ D-fructose-6-phosphate}_c
\]

Elementary flux mode analysis is being used to predict preferred electron sinks under combined light and pH stress. Here, the model predicts that TAGs are preferably produced at high pH (low cost of protons) and low (cost of) light.
4 – Progress and Outcomes

Task 6 - CRISPR/Cas9-based genome editing of strain SLA-04 for productivity enhancement (highest risk task of project)

Milestone 6.1: Identify conserved gene sequences in *Chlorella*, and design RNA guides for targeted mutations using Cas9 – Q5

Milestone 6.2: Express and purify Cas9 proteins bound to RNA guides. Optimize transformation of *Chlorella sorokiniana* strain SLA-04

Transformation of SLA-04 is **challenging** (confirmed by Starkenburg Lab at LANL)

In Progress: Genome editing targets being predicted through transcriptomic/metabolomic work (Task 4) and metabolic modeling (Task 5)

End of Project Goal: Isolate one or more isogenic mutants and test for novel phenotypes.
4 – Progress and Outcomes

Task 7 - Process economics and LCA – feedstock production through biofuel intermediate

Increased carbon capture
(milestone 7.1.1—in progress)

- Evaluated enhanced carbon uptake technology scenarios via LCA/TEA

Biorefinery Financial Risk Management

- Modeled the financial risk for an algal biorefinery site
- Developed an index-insurance contract to manage both weather- and market-related revenue variability
- Found the lowest cost risk management strategy using both reserves and index-insurance (Figure 2)
- Evaluated the effectiveness of the various risk management strategies (Figure 3)

Figure 1 The effect of increasing mixing energy to boost productivity on minimum biodiesel selling price; the lipid contents at 18% (baseline), 27%, 36%, and 45% (very optimistic) are shown, as are the historic biodiesel market prices at the mean and 1st/99th percentiles.

Figure 2 Optimization of the present value of risk management costs across various strike values, where the lowest net cost, which corresponds to the 95.72% VAR, is starred.

Figure 3 Simulated yearly (A) net revenues, (B) reserves cash flows, and (C) insurance payouts for a single model realization with low net revenues.
Summary

• High media pH (>10) drives rapid transfer of CO₂ from the atmosphere to growth media.
• Borate is an effective rate promoter for CO₂ mass transfer from the atmosphere into alkaline media.
• Under high-pH AND high-alkalinity conditions, cultures achieve high productivity even in the absence of concentrated CO₂ inputs.
• Biomass composition can be improved by “adjusting” nutrient composition without significantly compromising biomass productivity.
• Increasing mixing rates for higher mass transfer may not negatively impact fuel price under high productivity scenarios.
• Sequenced, annotated and improved (through transcriptomic work) SLA-04 genome assembly.
• In silico reconstruction of SLA-04 metabolic pathways is in progress and is being used to predict gene editing targets in conjunction with transcriptomic/metabolomic work.
• BONCAT labeling is being developed to identify active populations in the microbiome under various growth conditions.
Quad Chart Overview

Timeline
- 09/30/2017
- 09/29/2021

FY20 Costed Total Award

<table>
<thead>
<tr>
<th>DOE Funding</th>
<th>FY20 Costed</th>
<th>Total Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10/01/2019 – 9/30/2020) $ 304,599</td>
<td>(negotiated total federal share) $ 2,397,698</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Cost Share</th>
<th>FY20 Costed</th>
<th>Total Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ 58,733</td>
<td>$ 498,978</td>
<td></td>
</tr>
</tbody>
</table>

Project Goal
Develop high productivity algal biofuel systems that are not constrained by CO₂ costs or availability of concentrated CO₂

End of Project Milestone
18 g/m²/d AFDW over a 4 week cultivation period in 4.2 m² outdoor ponds without CO₂ sparging or pH control.

Project Partners*
- Montana State University
- University of North Carolina at Chapel Hill
- North Carolina State University

Funding Mechanism
DE-FOA-0001628 – Performance Enhanced Algae Toolkits (PEAK)

*Only fill out if applicable.
Additional Slides
Responses to Previous Reviewers’ Comments

• **Comment 1:** “… cultivation experiments are tightly connected to the tool development …”
 - **Response:** We are actively using microbial ecology toolkits to assess culture microbiome composition from cultivation experiments.

• **Comment 2:** “It is critical that the biology impact is considered when refining models for CO₂ exchange with the pond media.”
 - **Response:** We have developed a first-principles mathematical model of the mass transfer process and correlated model predictions with experimental data to estimate mass transfer rates. We are currently integrating the model with algae growth models to describe mass transfer during cultivation. We are using a close-coupled approach to simultaneously solve the biotic and abiotic models as shown below.

![Diagram of mass transfer model](image-url)
Commercialization: Synergia Biotech Inc. is commercializing a phycocyanin product from algae using the high pH/high alkalinity approach developed by our team.

Patents

Publications:
- Bui, Huyen; Miller, Isaac; Fields, Matthew W.; Gerlach, Robin. Ecological Engineering of Industrial Algal Cultures. Algal Research. In preparation
- Lu, Shipeng; Bui, Huyen; Moll, Karen; Gardner, Robert D.; Fields, Matthew W.; Gerlach, Robin. Transcriptional changes underlining metabolic switches in Chlorella vulgaris UTEX 395 cultivated under nitrogen depletion with bicarbonate amendment. Algal Research. In preparation

Presentations:
Task 5 Supplemental Info:

- Roughly 300 reactions
 - ~115 cytosol
 - ~50 mitochondria
 - ~80 chloroplast

Elementary flux mode analysis can also be used to analyze the relationship between enzyme use and light stress. Here, it is shown that TAG production is possible with a moderate number of enzymes under a low light cost.
Advantages of our technology

1. Harsh pH conditions (pH>10) can mitigate detrimental microbial contamination and predator populations.

2. Alkaline solutions scavenge CO₂ from the atmosphere at rapid rates. Thus, costs and geographical constraints associated with CO₂ supply can be mitigated (or eliminated).
Technology Background

Cultivation on atmospheric CO₂ and without pH control
With external CO₂ Input for pH control

High media alkalinity improves CO₂ fixation and biomass growth rates due to higher availability of bicarbonate

Energy flow

<table>
<thead>
<tr>
<th>Energy flow</th>
<th>Description</th>
<th>Notation</th>
<th>High HCO₃⁻ (65 mM)</th>
<th>Low HCO₃⁻ (7 mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Towards carbon fixation</td>
<td>Effective PS II quantum yield (photons utilized per incident photons)</td>
<td>Y(II)</td>
<td>0.37</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>Photosynthetic efficiency (electrons per photon)</td>
<td>α</td>
<td>0.16</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>Maximum electron transfer rate (µmole/m²/s)</td>
<td>ETRₘₐₓ</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Dissipation</td>
<td>Total regulated + unregulated dissipation (photons dissipated per incident photon)</td>
<td>Y(NPQ) + Y(NO)</td>
<td>0.65</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>Maximum quantum yield</td>
<td>Fᵥ/Fₘ</td>
<td>0.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>

AFDW productivity (g/m²/day)

- **Culture medium alkalinity (meq/L)**
 - 7
 - 15
 - 20
 - 40
 - 60
 - 10*
 - 20*
 - 30*

Average productivity

Maximum productivity
Experimental design and work plan

- TEA and LCA
- CRISPR/Cas9 Gene editing
- Community dynamics
- CO₂ mass transfer models
- Media components – N, P, micro-nutrients, alkalinity
- Metabolism and transcriptomics
- Metabolic flux models
- Productivity and composition improvement – demonstration by multi-scale and multi season experiments

Chart:
- Biomass (g/m²/d)
- FAME % (w/w)
- Carbohydrate % (w/w)

- Low-Ca medium
- Low-Mg medium
- Standard BG-11 medium