DOE Bioenergy Technologies Office (BETO) 2021 Project Peer Review

Intensified Biogas Conversion to Value-added Fuels and Chemicals WBS: 2.3.1.414

Friday, March 12, 2021

Conversion

PI: John N. Kuhn (USF)

co-Pls: Babu Joseph (USF) and Matt Yung (NREL)

This presentation does not contain any proprietary, confidential, or otherwise restricted information

GOAL STATEMENT

Goal: Convert **biogas** obtained from landfills or anaerobic digesters (AD) into **liquid hydrocarbon fuels (BGTL, biogas-to-liquids)**

• Develop an intensified process to reduce CAPEX and enable a 15% reduction in MFSP (minimum fuel selling price) relative to SOT

Outcome: A BGTL technology, demonstrated on industrial process gas, to convert biogas from distributed facilities (e.g., landfills, agricultural AD units, wastewater treatment plants) into cost-competitive fuels and to reduce fossil GHG emissions.

Relevance:

Drawbacks from current technology pathways:

- High CAPEX and complex process not suitable for distributed, small-scale productions
- Methane flaring or combustion for heat/power is a low value product

Advance biogas utilization technology by focusing on:

- Intensified process (catalyst and process)
- Mild operating conditions (moderate T, low P)
- High value product (high jet/diesel selectivity)
- High carbon efficiency to product
- Demonstration with industry partner, process gas

QUAD CHART REVIEW

Timeline

Project start date: 10/1/2018

Project end date: 9/30/2022

Budget

	FY20 Budgeted*	Total Award	
DOE Funding	\$1,174,021	\$1,836,459	
Project Cost Share	\$292,539	\$460,297	

Partners/Collaborators

- Industry/Community Partners: T2C-Energy LLC, regional county landfills (Citrus, Manatee, Sarasota), Hinkley Center for Solid Waste Management
- NREL /BETO Projects: Advanced Catalyst Synthesis and Characterization (ACSC), Thermochemical Process Analysis

Project Goal

Develop a multi-functional catalyst to produce valueadded fuels and chemicals from biogas via an intensified pathway

End of Project Milestone (FY22)

Achieve 100 hr operation using commercial biogas and ≥25% reduction in MFSP, as compared to the benchmark SOT

Funding Mechanism

FOA: DE-FOA-0001916

Topic area: BioEnergy Engineering for Products

Synthesis (BEEPS)

Year: 2018

^{*} Through end of FY20

1.Overview

- 2. Management
- 3. Approach
- 4. Impact
- 5. Progress and Outcomes

1. Overview

1. PROJECT OVERVIEW (1 of 3)

Overarching Goal:

Upgrade biogas to valueadded fuels and chemicals

Biogas (~500 BTU/SCF)

Potential:

Diversify to value-added products, circular economy, minimize flaring

Competing options to mitigate environmental impact of biogas/landfill gas:

Retail prices* (\$/GGE)

n/a

\$1.00 (3 cents/kWh; retail to grid)

\$2.18 (CNG) 2.42 (LNG) \$2.13 (diesel) 2.26 (methanol)

1. Project Overview (2 of 3)

Conventional process:

- 3 reactors
- >20% methane loss in reformer
- High pressure

TriFTS^{TM*}:

- WGS removed via catalyst and process tuning
- Compressor and heat-exchanger are major costs

Intensified BGTL:

- Tune to small scale
- Mass and heat integration

^{*} T2CE led SDI project; USF COI, Zhao et al Sust En Fuels 2019

1. PROJECT OVERVIEW (ORIGINAL 3 of 3)

Biogas to liquid fuel via intensified catalytic synthesis

- 1. Overview
- 2. Management
- 3. Approach
- 4. Impact
- 5. Progress and Outcomes

2. Management

2. Management: Task Structure (1 of 3)

Task Structure

Task 1: Project Verification

Lead: U. of South Florida

Task 2: Catalyst Synthesis, Validation and Reaction Testing

Lead: U. of South Florida

Task 3: Advanced Materials Characterization and Design

Lead: NREL

Task 4: Commercialization Readiness

Lead: U. of South Florida with Industry Partners

Task 5: Technoeconomic and Lifecycle Analysis (TEA/LCA)

Lead: NREL

Task 6: Project Management

Lead: USF

Project Overview:

 Develop intensified catalytic process for biogas-to-fuels and demonstrate technology on industrial biogas.

The project management plan allows each organization to focus on its core capabilities to enable rapid catalyst and process development.

2. Management: Focus on Success Factors (2 of 3)

Go/No-Go – Focused on critical success factor – C2+ hydrocarbons :

"Demonstrate ≥10% yield of C2+ hydrocarbons on lab-scale..." in 2021

*(Already achieved 6% hydrocarbon yield on lab-scale, up from 3%)

Activities focus on critical success factors by addressing the Go/No-Go criteria and reducing project risks.

Project Communication–

Weekly meetings; quarterly DOE meetings; ongoing industrial input;

Interdisciplinary Team Members

Expertise in reaction
 engineering, characterization,
 synthesis,, TEA/LCA, scale-up,
 and industrial biogas production

Data Management – Secure data folders for all project files

Leverage BETO Investments— Collaborate and leverage core competencies of NREL and BETO's ChemCatBio consortia for catalyst characterization (ACSC) and TEA/LCA

Integrated Approach

Development is accelerated by an iterative, multifaceted approach to R&D challenges

2. MANAGEMENT: RISK MITIGATION PLAN (3 of 3)

Site visit to Citrus County landfill to procure biogas for testing.

Grabbing the "bull by the horns" during kick-off meeting in Tampa.

Project Risks and Mitigation Strategies

Carbon Efficiency

Concerted effort towards catalyst/process improvement to reduce uncertainty in yields to enable cost goals

Process Economics

Establish performance targets and develop sensitivity analysis to identify largest cost reduction parameters

Suitability of Product Molecular Weight

Product molecular weight can be tuned by olefin oligomerization at reactor exit by adjusting C-C coupling (NiO/SiO₂-Al₂O₃)

Equipment failure and staffing disruption

Key capabilities and operations (e.g., reactor, analytical, characterization, industrial supply) have redundant capabilities to mitigate disruption to project progress

Contaminants Effects with Real Process Gas

Experience with gas clean-up (siloxanes, H₂S, NH₃) and working with real process gas reduces risk of unknown contaminant impacts (halides)

Biogas compression and filling unit (BRC FuelMaker).

Landfill gas cylinders at labs for reaction testing.

- 1. Overview
- 2. Management

3.Approach

- 4. Impact
- 5. Progress and Outcomes

3. Approach

3. Approach (1 of 4)

Convert biogas to valued added chemicals and fuels and avoid carbon loss to undesirable products.

AD at dairy farm

Gas collection at landfill

Challenges – Methane conversion, C2+ selectivity, catalyst stability, economies of scale

3. Approach (2 of 4)

Catalyst design

Integrate catalysts for specific reactions separated by microporous (i.e., zeolite) shells

Novelty: Tandem catalysts for reforming and CO hydrogenation

- Single reactor strategy overcomes economy of scale (major C1 issue)
 - Lowering cap-ex
 - Lowering pump and compressor op-ex
- Mass and heat transfer inherently improved;
 achievable through composite bed catalyst
 approach
- Challenges: catalyst performance outside of typical operation ranges

3. Approach (3 of 4)

Tailor catalysts with varying functionality under similar conditions:

- (1) Catalytic activity (methane activation and C-C bond forming)
- (2) In-situ separation

Important for upgrading to value-added chemical production

1. Catalytic activity

2. In-situ separation

3. Approach (4 of 4)

Bed Configurations

Multiple process options to integrate components into a single catalyst bed:

- Develop reactor models for the <u>reforming</u> and <u>FTS</u> using composite catalysts and examine variability
- Combine in single reactor to <u>optimize</u>
 the intensified reactor in terms of
 <u>bed packing and shell thickness</u>

- 1. Overview
- 2. Management
- 3. Approach
- 4.Impact
- 5. Progress and Outcomes

4. Impact

4. IMPACT – BETO BARRIERS & GOALS (1 of 3)

Project Outcomes and Relevance – Demonstrate a new pathway to BETO for biofuel production

- Biogas underused as a feedstock
- Intensified strategy overcomes economy of scale challenges (major C1 issue)
- Novel approach provides portfolio diversification and low-cost route
- Collaborate across industry, academia, and ChemCatBio to accelerate catalyst development for bioenergy applications

BETO MYP Barriers

Ct-F. Increasing the Yield from Catalytic Processes

Ct-G. Decreasing the Time and Cost to Develop

Novel Industrially Relevant Catalysts

Ct-E. Improving Catalyst Lifetime

Ot-B. Cost of Production

BETO Performance Goals:

By 2030, verify hydrocarbon biofuel technologies that achieve ≥50% reduction in emissions relative to petroleumderived fuels at \$2.5/GGE MFSP

Relevant	Benchmark	Status	Long-Term
Criteria	(FY18 SOT)	(FY21 SOT)	Target
Biogas conversion (single-pass) to C2+ HCs	0.4%	6%	>10%

- Providing early-stage R&D to enable verification reduce risk
- Identifying viable routes to \$2.5/GGE

4. IMPACT - BIOENERGY INDUSTRY (2 OF 3)

Industrially-relevant for both established and emerging companies, municipalities, and publicprivate ventures in providing routes to renewably-sourced products to penetrate existing markets and develop new markets.

- Interest from both *upstream and downstream* companies (landfills and agriculture to consumers)
- Technology applies to a variety of processes and waste feedstocks
- Market demand from existing companies to use renewably-sourced precursors and to minimize off-gas waste streams
 - Create a cost-competitive technology with an emphasis on the small scale
 - Focus on products with large markets, high value, and potential for bio-adoption
 - ~2000 landfills in US plus many more ag waste & waste wate treatment facilities
- Creates a <u>diversified revenue</u> stream for biogas producers

4. IMPACT – SCIENTIFIC ADVANCEMENT (3 of 3)

Developing Foundational Science

Peer Reviewed Publications

External Presentations

Generating Intellectual Property

Issued Patents

Pending Patent Applications

Building Industrial Partnerships

Multiple Industry/Municipality
Collaborations

Training and Support for Next-Generation Engineers/Scientists

Ph.D. students supported Post-doctoral researchers supported Undergraduate internships

- 1. Overview
- 2. Management
- 3. Approach
- 4. Impact
- 5.Progress and Outcomes

5. Progress andOutcomes

5. Progress and Outcomes: (1 of 7)

Low temperature CH₄ reforming

Challenge:

- Traditional CH₄ reforming requires high temp. on Ni catalyst for C-H activation
- High temp. not suitable for FTS

Progress:

- Increased activity (lowered C-H activation temp.) with Ni-Pt alloy
- Modified synthesis to improve dispersion, reduce Pt loading and cost, and increase activity
- New formulations (Ru, Zn) to eliminate
 Pt and further reduce catalyst cost
 (40% reduction, ~\$12/kg)
- Durability testing for 100+ hours shows stable, robust process with minimal coke (high carbon efficiency)

Improved reforming catalyst and reduced cost.

- Catalyst cost reduced by 40%
- Low temp. (450°C) activity increased significantly

Activity:

 Tuned via synthesis and enhance activity and reduce cost

Selectivity:

 H₂: CO ratio tuned ~ 2 for optimal Fischer-Tropsch synthesis by feeding steam

Stability:

- No CO₂ formed during TPO after ~ 100+ hr TOS (T = 450 °C)
- Coking rate < 4.4E-6 g-C/g-cat/h

5. Progress and Outcomes (2 of 7)

5. Progress and Outcomes (3 of 7)

High temperature C-C coupling: FTS

Selectivity study as a function of Fe:In loading

C5+ Selectivity (%)

Indium Composition (mol%)

Indium Composition (mol%)

Challenge:

- Fischer-Tropsch synthesis (FTS) at high temp. limits molecule size (chain length)
- Stability can be challenging at high temperature (>400°C)

Progress:

(b)

- Iterative reaction testing and characterization improved Fischer-Tropsch catalyst
- Indium promoting \uparrow Fe dispersion, and limits undesired CH₄ and CO₂ formation; optimal dopant ratio of 10:1 Fe:In of test matrix

Metal dispersion increases with increasing In (indium) content

5. Progress and Outcomes (4 of 7)

High temperature C-C coupling

XPS over the post-reaction catalysts

XPS analysis:

- suggested Fe-In interaction
- more In present near the surface layers when In loading increased

Progress:

- Indium increases surface reactant (CH_x)
 residence time by 3-fold (↓ methane formation
 and ↑ selectivity for C-C coupled products)
- Mechanistic insight
 - Isotopic studies in methanation regime and characterization (e.g., XPS, TPR) revealed insight to effect of indium promotion
 - Fe₁₀In/Al₂O₃ has stronger surface intermediates than Fe/Al₂O₃

TPR

In promotes reducibility (TPR)

Isotopic Exchange Experiments Surface residence time of CHx:

Fe/Al₂O₃: 7.0 s Fe₁₀In/Al₂O₃: 20.1 s

5. Progress and Outcomes (5 of 7)

Fischer-Tropsch Synthesis High temperature (400°C) C-C coupling

Challenge:

- Fischer-Tropsch synthesis (FTS) at high temp.
 limits molecule size (chain length)
- Stability can be challenging at high temperature (>400°C)

Progress:

- Synthesized high stability Fe₁₀In/Al₂O₃ catalyst
- Demonstrated >70 hours of stable Fischer-Tropsch activity
- High olefin selectivity allows facile m.w. tunings via oligomerization (demonstrated with Ni/SiO₂-Al₂O₃)
- Lower CO₂ production and benign reaction conditions (lower T, P) compared to literature/SOT

Stability study

>70 h of stable Fischer-Tropsch reaction

Partners have history of successful labto-pilot demonstration.

Industrial partners T2C
Energy and Citrus County
Landfill photographed with
skid pilot plant for
producing 75 gal/day of
fuel from landfill gas using
two-reactor (reforming +
FT) process and resulting
diesel product

5. Progress and Outcomes (6 of 7)

Challenge:

High-single pass CH₄
 conversion at T<500°C

Progress:

- Successful demonstration of intensified process
- Steam improves the mass yields of C2+ hydrocarbons significantly (utilize moisture in biogas)
- High olefin selectivity allows for oligomerization to tune product molecular weight

- Sequential catalyst beds in same reactor
- Temperature, pressure, and catalyst tuned products/rates
- Space velocity not a major factor
- Evaluated CO and H₂ co-feed to simulate recycle

5. Progress and Outcomes (7 of 7)

Environmental and Economic Assessment (TEA/LCA)

Challenge:

- Cost-competitive technology is needed to attract industrial interest
- Environmental benefits must be shown for "green premium," RINs, etc.

Progress:

- Detailed TEA/LCA models developed
 - 700+ process and heat and work streams with ~400 process units (reactors, separators, etc.
 - Compare intensified landfill gas process to traditional process using natural gas or landfill gas
- ~10-20% reduction in MFSP (\$3/GGE) using landfill gas in intensified vs. conventional process
- Utilization of landfill gas results in net-negative greenhouse gas emissions (GHGs) and negative fossil energy consumption (FEC)

SUMMARY

Goal: Develop catalysts and process to convert biogas into value-added fuels and chemicals, adding a diversified revenue stream to enable economic biofuels

-Target: 10% yield to C2+ by 2022 on bench-scale

-Status: 6% yield to C2+ on lab-scale using real biogas

Approach:

- Integrated, collaborative approach to multicomponent catalyst design for biogas upgrading to achieve valueadded and diversified product distributions
- Develop catalytic materials by enhancing core function in spatially separated components

Technical accomplishments:

- Developed multicomponent catalysts with 2x improvement in C2+ yield over SOT
- Demonstrated 70+ hours of stable catalyst performance

3) Relevance to Bioenergy Industry

- -Address critical challenges (adding value to biogas upgrading and improve yield of catalytic processes)
- -Focus on BETO barriers and performance targets
- -Renewable, cost-competitive products are of interest to industrial partners (upstream and downstream) – diversify revenue streams

Future work:

- Improve C2+ yields and determine catalyst stability
- **Scale-up** catalyst and biogas flow for bench-scale demonstration using LFG and link data to TEA/LCA

Biogas upgrading

Catalyst design to achieve high C2+ yields and \$\$\$

ACKNOWLEDGEMENTS

DOE BETO program
Trevor Smith, Nicole Fitzgerald, Seth
Menter and the verification team

USF students and NREL staff

USF (internal SIP grant)

Industry/Municipality partners

DOE Bioenergy Technologies Office (BETO) 2021 Project Peer Review

Intensified Biogas Conversion to Value-added Fuels and Chemicals WBS: 2.3.1.414

Friday, March 12, 2021

Conversion

PI: John N. Kuhn (USF)

co-Pls: Babu Joseph (USF) and Matt Yung (NREL)

This presentation does not contain any proprietary, confidential, or otherwise restricted information

2019 PEER REVIEW

A poster was presented at the 2019 peer review. Comments were not received as this project had just started.

HIGHLIGHTS OF GO/NOGO POINTS

Verification passed, summer 2019

SCIENTIFIC OUTPUT

Publications

Zhao, X., Joseph, B., Kuhn, J.N., and Ozkan, S., "Biogas reforming to syngas: a review" iScience 23 (2020) 101082. (DOI: 10.1016/j.isci.2020.101082)

Sokefun, Y.O., Joseph, B., and Kuhn, J.N., "Impact of Ni and Mg loadings on dry reforming performance of Pt/ceria-zirconia catalysts" Industrial & Engineering Chemistry Research 58 (2019) 9322-9330. (DOI: 10.1021/acs.iecr.9b01170)

Impact of structural changes from metal deposition method on the catalytic performance of Pt/ceria zirconia-based catalysts, in prep.

Tuning of the performance of Ru-Ni-Mg/Ceria-zirconia dry reforming catalysts through strategic reduction conditions and Ru loading, in prep.

Selective In-promoted Fe Catalyst for Syngas Conversion to Light Olefins, in prep.

Experimental and Modeling Study of Zeolite Encapsulated Ni/Mg Catalysts: Optimization of Shell Thickness for Reactant Selectivity in Hydrocarbon Steam Reforming, in prep.

Feasibility of intensified conversion of biogas to value added hydrocarbons, in prep.

Patents, Presentations, and Commercialization

Hinkley Center Solid Waste Research Colloquium Webinar Series

(https://swanafl.org/events/hinkley-center-solid-waste-research-colloquium-webinar-series/)

Frequent conference presentations

/contributions AICHE, ACS, ICC, NASCRE, NACS/NAM, NOBCChE, etc

Department Seminars
Various institutions
Also guest class lectures

IP
U.S. patent number 9,328,035
Record of Invention: ROI 20-141 at NREL

BFD of Intensified BTL Process

