DOE Bioenergy Technologies Office (BETO) 2021 Project Peer Review

Advanced Algal Biofoundries for the Production of Polyurethane Precursors

> March 11, 2021 Technology Area Session

Stephen Mayfield UC San Diego Nathan Hillson (LBL) & Jeremy Zucker (PNNL)

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

- Mission of project: Develop scalable, high-yield algae production platforms capable of producing polyurethane precursors for the sustainable manufacturing of bio-based, biodegradable, and recyclable foams and plastic products
- Key Academic Partners: UC San Diego, PNNL, LBL, UC Davis, & GT
- Cost Share Partners: Algenesis Materials, Reef, and Arctic Foam

1 – Management

Key Tasks and Responsibility:

- 1. Perform multiple rounds of DBTL to optimize synthetic nuclear promoters for *Chlamydomonas* (PNNL, LBL, UCSD)
- 2. Metabolic modeling (PNNL) & subsequent engineering (UCSD & UCD) to optimize chemical production under heterotrophy or phototrophy
- 3. Develop & assess baseline production strains (UCSD & UCD)
- 4. Generate biosensors (GIT) and MS-based (UCSD) high-throughput screening systems
- 5. Scaled production (UCSD) & TEA/LCA assessments (UCD)

2 – Approach

Improve Synthetic Algal Nuclear Promoters

Perform 2+ rounds of DBTL:

D: PNNL designs library of promoters based on experimental data from **UCSD**

B: LBNL synthesizes & clones library

T: UCSD tests promoter strengths in algae

L: PNNL develop ML tools to analyze results for subsequent rounds

Predict ME Targets for Improved Production

PNNL leverages metabolic models for cyanobacteria & algae to predict heterologous pathways, KOs, or over-expressions to optimize yields
UCSD & UC Davis tests these predictions & feeds back info to the models for further optimization.

Scale Production

UCSD scale production in both heterotrophic and autotrophic growth for TEA/LCA and to meet performance metrics.

Go/No-Go decision points = 1 gm/liter PU precursor

Synthetic promoter design

- **160bp promoters** trained on expression data from native promoter sequences
 - Neural network learned an embedding space mapping motifs and sequences to expression
 - AutoML learned RandomForest discriminator
- **260bp promoters** also contained predicted chromatin opening motifs in the upstream 100bp
 - Chromatin-opening motifs found empirically to be further from TSS
 - Motifs predicted from enrichment analysis of native expression data and native histone and RNAPol ChIP-Seq data.
- **Exploration**: designed low-confidence positive and negative promoters
- **Exploitation**: both methods used combinations of known high-expressing motifs
- > 1500 X 160-bp and 1500 X 260-bp long synthetic promoters were designed at PNNL
- Promoter libraries were synthesized by Twist via the LBNL ABL
- First round of libraries screened at UCSD and 2nd round designed and out for synthesis

Promoter library construction

LBL added barcodes to Twist-synthesized promoters and cloned oligos into a 6778 bg reporter vector designed by UCSD DNA library has been delivered to UCSD ٠ (4539) XbaI and transformations into Chlamydomonas reinhardtii are underway. Left seq. 8xN 8xN Right seq. **RBCS2** Pro Synthetic Promoter Barcode primer site primer site Barcode

1500 290-bp and 1500 200-bp long synthetic promoters ordered

NdeI (184)

Reporter vector design

Library	Hyg	Hyg+Zeo
200 bp	~4000 colonies	~600 colonies
290 bp	~4000 colonies	~450 colonies
	Hyg	Hyg+Ze
	HF1 30	13231

5 replicate transformations were made

200 bp library (Tap + Light)

<>	1	2	3	4	5	6	7	8	9	10	11	12
A	0.95372	1.02403	0.37941	0.08195	0.13417	0.40463	0.28867	0.96536	0.85335	0.57334	0.07666	0.75164
В	0.09664	0.87577	0.54517	1.48784	0.49818	0.64185	0.26716	0.61128	0.64637	0.64539	0.58224	0.46919
С	0.57324	0.64768	0.13062	0.66614	0.22241	1.02571	0.89963	0.42023	0.52139	0.32952	0.80015	0.41149
D	0.48674	0.24893	0.8184	0.85876	0.60651	0.91873	0.69128	0.88772	0.43604	0.38825	0.34852	0.4104
E	0.96837	0.97287	0.94873	0.63096	0.64033	0.7371	1.0717	0.76428	0.55084	0.56026	0.56043	0.57189
F	0.48871	0.84526	0.87743	0.28122	0.7871	0.57909	0.80794	0.56353	1.09065	0.64586	0.54583	0.6262
G	0.09356	0.32825	0.59998	1.13067	0.58181	0.6	0.88035	0.3768	0.35914	0.46659	0.39118	0.63168
Н	0.64894	0.61915	0.49459	0.65878	0.57559	0.41479	0.66962	0.65799	0.21425	0.55151	0.39487	0.60269

200 bp library (Tap + <u>Dark</u>)

\diamond	1	2						8	9	10	11	12
A	0.5557	0.53294	0.35469	0.09141	0.08944	0.37512	0.23739	0.75474	0.78011	1.21565	0.07495	0.47757
В					0.65454							
С					0.10791							
D					0.56498							
E	1.09312	1.35732	0.85387	0.52164	0.58951	0.59656	0.3477	0.96968	0.74225	0.75727	0.94672	0.75108
F	0.30109	0.45356	0.90955	0.1812	0.90095	0.49608	0.87134	0.41659	0.54724	0.53112	0.591	0.63898
G	0.11564	0.29795	0.68323	0.6428	0.38906	0.22245	0.53768	0.18266	0.27055	0.40303	0.32333	0.33541
Н	0.62643	0.51684	0.4616	0.45602	0.366	0.15916	0.64246	0.41879	0.14356	0.29363	0.23338	0.30068

Promoter assessment

- Separate Analyses for FACS-Sorted (enriched) and Unsorted Barcode Count Data
 - Survival Index Distribution (Gamma Distribution) Hyg (expression) / HygZeo (high expression)
 HygZeo Survival Probability (Binomial Distribution)
- Combined Analysis for FACS-Sorted and Unsorted Barcode Count Data
 - Fluorescence CDF Ratios (Non-Parametric Distribution) (protein accumulation)

$$\begin{aligned} H_i &\sim \Gamma\left(\alpha_i, \beta_i\right) & H_i &\sim B\left(n_i, p_i^H\right) & \int_0 p_{F_i}\left(f_i\right) df_i = C_{F_i}\left(x\right) \\ Z_i &\sim \Gamma\left(\gamma_i, \eta_i\right) & Z_i &\sim B\left(H_i, p_i^Z\right) & 0 \\ S_i &= \frac{Z_i}{H_i} & \Rightarrow Z_i &\sim B\left(n_i, p_i^H p_i^Z\right) & \frac{1}{m} \sum_i C_{F_i}\left(x^*\right) = 0.9 \end{aligned}$$

$$E_{i}\left[\ln\frac{Z_{i}}{H_{i}}\right] = E\left[\ln Z_{i}\right] - E\left[\ln H_{i}\right]$$
$$= \psi\left(\gamma_{i}\right) - \psi\left(\alpha_{i}\right) + \ln\left(\beta_{i}\right) - \ln\left(\eta_{i}\right)$$

$$\int_{f_{thresh}}^{\infty} p_{F_i}\left(f_i\right) df_i = p_i^Z \qquad \qquad \frac{Z_i Z_j^{FACS}}{Z_j Z_i^{FACS}} = \frac{1 - C_{F_i}\left(x^*\right)}{1 - C_{F_j}\left(x^*\right)}$$

x

Prediction method

- Nucleotide and Motif-Based Promoter Sequence Embeddings
- 5 Separate Predictors Per Embedding
 - 2 Methods (Gamma and Binomial Distributions) each for Standard and FACS data
 - 1 Combined Method (Non-parametric CDF)
- Nonlinear Regressions with Deep Learning Trained on Analysis Results
 - Random Promoter Generation
 - Average Performance Across Predictors

$$E_i \left[\ln \frac{Z_i}{H_i} \right] \qquad \qquad p_i^Z$$

 $d_{ij} \equiv \log (1 - C_{F_i}(x^*)) - \log (1 - C_{F_i}(x^*)) = \log Z_i - \log Z_i^{FACS} - (\log Z_j - \log Z_j^{FACS})$ $d_{ij} = -d_{ji}$ $\min_{\theta} \sum_{i,j} \|N(x_i;\theta) - N(x_j;\theta) - d_{ij}\|^2 + \epsilon \sum_i \|N(x_i;\theta)\|^2, \ \epsilon \ll 1$

Metabolic Models (MMs)

- Preliminary MMs have been coded for Synechococcus elongatus and C. reinhardtii, including essentiality and transcriptome data from UCSD.
- OptCouple, OptKnock, OptForce and OptTilt have been applied to these models to predict strains capable of improved production
- For example, 24 gene knockouts were predicted to improve diacid production in *S. elongatus.*

Cell Factory Design: New Theorem (PNNL)

- OptTilt beats OptCouple and OptKnock
- 'Tilting' Term
 - Generates growth-coupled solution
 - Guarantees optimality
 - Ensures maximal production

1,4-BDO Metabolic Model in cyanobacteria

Prediction is to increase acetate production to overcome acetate deficit at 2nd step in 1,4-BDO synthesis. Overexpression vector for ACS and strain currently being generated in *S. elongatus*.

Succinate: Improved production vectors for cyanobacteria

Generated vectors with increased productivity over baseline production, but in a background strain dependent manner. Currently investigating the 5 SNPs that differ between the background strains.

Metabolic modeled mutants for succinate production in cyanobacteria

Over 30 KOs predicted to increase production. A number of knockouts increased production 2 - 3 fold. Currently combining multiple mutations and vector pathways into a single cell to test combined impacts.

Phototrophic scaled production of succinic acid in cyanobacteria

LAN1 (baseline succinate production strain) grown at 20 L scale under <u>continuous light</u> <u>conditions indoors</u>

Succinate yields of:

- 178.8 mg/L
- or 336 mg/L/OD
- 2.7x improvement over smaller scale

LAN1+sucD-KO grown at 20 L scale <u>in outdoor</u> greenhouse with natural light

Succinate yields of:

- 161 mg/L
- or 326 mg/L/OD
- Likely same as 2x less productive strain due to half the amount of light time

Heterotrophic production succinic acid in cyanobacteria

Strain: *S. elongatus* PCC 7942 that can consume glucose and produce succinate (NSI pTrc: *galP-zwf-gnd* spec^R, NSIII pLlacO1: *gabD-kgd-ppc-gltA* gen^R)

Light: 30 mmol photons/m²/s in the PAR range

Temperature: 30°C Production media: BG-11 + 50 mM NaHCO₃ + 10 g/L glucose

Every 24 h, 10% of the culture volume was removed, the pH was adjusted to 7.0 with 3.6N HCl and volume was replaced with production media containing 200 mM NaHCO₃.

Over 1 g/L yield reached in 5 days = Go/NoGo milestone reached

Screening on glucose/xylose and complex corn stover hydrolysate substrate

		Mixotrophic on glucose	Heterotrophic on glucose	Indication of inhibition on xylose	Indication of inhibition on CSH
	IV-006	~	~		
	IV-031	~	~		
	IV-033	~	~		
	IV-055	>	>		
	IV-112	>			✓
	IV-113	~	~		
Income wind D. And Development	IV-118	~	~		
Imperial Valley isolates	IV-131	~	~		
	IV-132	~	~		
	IV-139	~	~		
	IV-157	~	~	~	
	IV-233	~			
	IV-238	~	~		
	IV-241	✓	✓	~	

	CCAP 11/41	~	~		
Chlamydomonas asymmetrica	UTEX 227	~	~		
	NIES 2207	~			
Chlamydomonas debaryana	UTEX 231	~	~	~	✓
Chlamydomonas pseudagloe	CPA WT	~	~		
Chlamydomonas pseudococcum	CPC	✓	✓	✓	✓

Chlorella vulgaris	CV 25	✓	✓	✓	
Desmodesmus armatus	DA 25	>			
(Chlorella sp.)	WHIT GREENS 7	~	~	~	
Parachlorella kessleri	PK 25	~	~		

Screening on pure glucose/xylose:

- 54 strains screened on CSH components separate glucose and xylose agar plates at 1% concentration
- 24 strains found to be capable to grow on glucose mixotrophically/heterotrophically
- No strain found to be capable to grow on xylose as sole carbon source; inhibition observed for a few strains

Screening on CSH (NREL) substrate:

- Mixotrophic/heterotrophic strains on glucose tested on CSH
- Goal: Confirm whether there is any toxicity visually observed on CSH (in a concentration equivalent to 1% glucose) compared to growth on pure 1% glucose
- No apparent toxicity observed for most of the strains

Next Steps

- Promoter DBLT:
 - PNNL: Analyze data from the five replicate transformations and generate 2nd library
 - LBNL: Synthesize & clone 2nd library
 - UCSD: Transform 2nd library into C. reinhardtii and assess promoter strengths using FACS and NGS.
 - If budget allows, perform a third round of DBLT
- Metabolic Modeling:
 - UCSD & UC Davis: Optimize & scale production strains and provide yield & omics data for production to PNNL
 - PNNL: Adjust models based on data from UCSD & UC Davis; predict heterologous, knock down, or over-expression alternatives for boosting production in both S. elongatus and C. reinhardtii
- Pilot scale production:
 - UCSD down select, optimize, and scale production strains and provide yield and omics data for TEA/LCA to UCD

Summary

- We set out to develop a scalable, high-yield algae production platforms capable of producing polyurethane precursors
- This was a collaboration between academic labs working on algae biotechnology (UCSD, UCD, GT) and the ABF labs of PNNL (computation) and LBNL (DNA foundry)
- At first, there were delays due to paperwork and communication glitches, but we eventually learned each other's languages and capabilities, and are moving forward together at full speed now
- We have had some good early successes on both creating synthetic promoters for algae, and metabolic modeling of succinic acid production in cyanobacteria
- We have achieved our Go/NoGo milestone of 1 gm/L succinic acid
- We have a pretty far way to go to achieve the FOA milestone of 20gm/L ... and that is
 probably still only half of the level required for commercial production but we are only 18
 months into the project ;-)

Quad Chart Overview (Competitive Project)

Timeline

- Project start date 10/1/2019
- Project end date 6/30/2022

	FY20 Costed	Total Award
DOE Funding	(10/01/2019 – 9/30/2020)	(negotiated total federal share)
	\$859,559	\$2,000,000
Project Cost Share	\$301,610	\$570,000

Project Goal

Develop algae as a production platforms capable of producing polyurethane precursors for the sustainable manufacturing of bio-based, biodegradable, and recyclable foams and plastic products

End of Project Milestone

Determination of yield and cost of heterotrophic versus photosynthetic production of polyurethane precursors in cyanobacteria and algae production systems

Project Partners*

- Partner 1 PNNL, LBNL
- Partner 2 UCD, GT

Funding Mechanism DE-FOA-001916 Topic Area 2, Agile BioFoundry Industrial Partnership (ABF) 2018

*Only fill out if applicable.

Additional Slides

Responses to Previous Reviewers' Comments

- This project has not been peer reviewed previously
- Also provide highlights from any Go/No-Go Reviews

Publications, Patents, Presentations, Awards, and Commercialization

- CRADA signed between UCSD and ABF
- No Publications, Patents, or external Presentation to date