Integrating Chemical Catalysis and Biological Conversion of Carbon Intermediates for Deriving Value Added Products from Carbon Dioxide

Dr. Michael Betenbaugh, Johns Hopkins University
Dr. Chao Wang, Johns Hopkins University
Dr. Sarah Jordaan, Johns Hopkins University
Dr. Marina Kalyuzhnaya, San Diego State University
Dr. Pavlo Bohutskyi, Pacific Northwest National Laboratory
Dr. Alexander Beliaev, Pacific Northwest National Laboratory

March 11th, 2021

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

- CO₂ capture is increasingly viewed as an important technology towards meeting climate goals
- Electrocatalytic systems excel at converting CO₂ into C₁ and C₂ compounds, but are challenged in forming additional carbon bonds
- Biological systems can build complex carbon compounds from simple carbon compounds, but are less
 efficient at upcycling CO₂ due to gas diffusion limitations and limited conversion to long carbon chain
 biomolecules
- Project goal: Develop an integrated platform that takes advantage of the strengths of electrocatalysis and bioconversion to convert CO₂ → C₁ and C₂ intermediates → bioproducts

Timeline

- Start: 01 October 2018
- End: 01 September 2022

	FY20 Costed	Total Award
DOE Funding	\$472,106	\$1,419,429
Project Cost Share	\$66,420	\$531,910

Project Goal

Develop a two-stage process integrating electrocatalysis and bioconversion to upcycle CO₂ to intermediates to polyhydroxybutyrate and biomass, which will inform both techno-economic and life cycle analyses of the complete system.

End of Project Milestone

Achieve a 37% process carbon conversion efficiency from an input CO_2 stream to polyhydroxybutyrate and biomass for biocrude using microbial bioconversion; develop an accompanying techno-economic and life-cycle analysis to assess barriers to cost-competitive product generation and sensitivity of the system to market dynamics.

Project Partners

- Johns Hopkins University
- Pacific Northwest National Laboratory
- San Diego State University

Funding Mechanism DE-FOA-0001916: Bioenergy Engineering for Products Synthesis (BEEPS) Topic area 5: Rewiring carbon utilization Year: 2018

Overview > Management

Quad

Chart

Overview

Approach > Impact

Progress & Outcomes / Summary

Structure and Team

Dr. Chao Wang (JHU)

Dr. Marina Kalyuzhnaya (SDSU)

Dr. Alex Beliaev Dr. Pavlo Bohutskyi (PNNL)

Dr. Michael Betenbaugh (JHU)

Dr. Sarah Jordaan (JHU)

Electrocatalysis

Optimization of electrocatalytic conversion of CO_2 to reduced carbon compounds

<u>Biosynthesis</u>

Engineering of *M.* alcaliphilum 20Z^R to convert reduced carbon intermediates to PHB

Optimization

Characterization of engineered *M.* alcaliphilum 20Z^R and optimization of the biological production of PHB

Integration

Integration of electrocatalytic reduction and bioconversion processes

TEA/LCA

Techno-economic and life cycle analysis of complete process to assess commercial viability

Abbreviations: Johns Hopkins University (JHU), San Diego State University (SDSU), Pacific Northwest National Laboratory (PNNL), polyhydroxybutryate (PHB), techno-economic and life cycle analysis (TEA/LCA)

Approach Impact

Progress & Outcomes

Summary

Structure and Team

Dr. Chao Wang (JHU) Dr. Marina Kalyuzhnaya (SDSU)

Dr. Alex Beliaev Dr. Pavlo Bohutskyi (PNNL)

Dr. Michael Betenbaugh (JHU) \$

Dr. Sarah Jordaan (JHU)

Risk: low CCE toward methanol

Mitigation: co-product production (e.g., formate, acetate)

Risk: low conversion of substrates to product

Mitigation: consider variable inputs and engineer metabolic pathways **Risk:** growth varies with operating conditions

Mitigation: study range of conditions to find optimum **Risk:** potential toxic compounds in electrochemical effluent

Mitigation: adjust chemical feedstocks for biological use **Risk:** economic viability is tied to commodity markets

Mitigation: apply TEA/LCA to identify best targets and opportunities

Abbreviations: Johns Hopkins University (JHU), San Diego State University (SDSU), Pacific Northwest National Laboratory (PNNL), polyhydroxybutryate (PHB), techno-economic and life cycle analysis (TEA/LCA)

Approach Impact

Progress & Outcomes

Summary

Background, Approach, and Challenges

Approach

Impact

Background

- Few studies on integrated electrocatalyticbiocatalytic systems
- Limited work on selective electroreduction of CO₂ to methanol
- Anaerobes can capture industrial off-gases and upcycle them to short carbon chain chemicals/fuels

Technical Approach

- Two-step process
 - 1. Electrocatalysis: use of electricity and inorganic catalysts to convert chemicals
 - 2. Bioconversion: use of bacteria to convert chemicals

Whiting School of Engineering

Chemical and Biomolecular Engineering

• $CO_2 \rightarrow$ methanol, acetate, formate \rightarrow PHB, biomass

Challenges

- Electrocatalysis: efficient conversion of CO₂ into methanol
- Bioconversion: efficient growth and chanelling of non-ideal substrates into valuable products

Abbreviations: polyhydroxybutyrate (PHB)

Management

Overview

Summary >

Go/No-Go Decision Points

Budget Period 1

Demonstrate potential to achieve **CCE>37%** from CO₂ to fuel or product Budget Period 2

Demonstrate **FE≥70%** and **CCE≥80%** toward formate platform products

<u>Critical because:</u> it will enable **PHB and biomass production at proof-ofconcept CCE** <u>Critical because:</u> it will **produce enough substrate** for integrated process Budget Period 3

Electrocatalysis: FE≥50%, CCE≥50% toward methanol platform products Bioconversion: CCE≥40%, yield≥0.3 on methanol

<u>Critical because:</u> it will enable **efficient biomass and PHB production**

Abbreviations: Faradaic efficiency (FE), carbon conversion efficiency (CCE), polyhydroxybutyrate (PHB)

Overview > Management

Approach Impact

Progress & Outcomes

Summary

Key Metrics

Team	Metric	Assumptions	Analyses
Electrocatalysis	Faradaic efficiency	Electrocatalyst design can improve FE	GC-MS, NMR
	Carbon conversion efficiency	Co-products will improve CCE	GC-MS, NMR, flow control
	Product concentration and rate	Recirculation can improve concentration	NMR, flow control (gas, liquid)
Biosynthesis	Recombinant protein expression	Proteins are expressed & active	SDS-PAGE, enzyme activities
	Yield (g PHB/g cell dry weight)	Engineering can improve yield	Extraction; cell dry weight
	Carbon distribution	Metabolic tuning can improve	Metabolomics, NMR, GC-MS
Optimization	Yield (g biomass/g substrate)	Dependent on dilution rate	Extraction; cell dry weight
	Carbon conversion efficiency	Dependent on media composition	NMR, HPLC, GC
Integration	Operating mode (batch, semibatch)	Culture behavior is consistent	Reactor design
	Yield (g biomass+PHB/g substrate)	Dependent on methanol	Extraction; cell dry weight
	Carbon conversion efficiency	Substrate utilization pathways	NMR, HPLC, GC
TEA/LCA	Net present value	Material costs, selling prices	Aspen process simulation
	CO ₂ emissions	Process parameters	Emissions modeling

Abbreviations: techno-economic and life cycle analysis (TEA/LCA), sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), nuclear magnetic resonance (NMR), high performance liquid chromatography (HPLC), gas chromatography (GC), gas chromatography-mass spectrometry (GC-MS), Faradaic efficiency (FE)

Approach Impact

Progress & Outcomes

JOHNS HOPKINS
UNIVERSITYWhiting School of Engineering
Chemical and Biomolecular Engineering

Technological Impact

- New electrochemical reduction process and catalyst for high efficiency energy conversion and chemical transformation
- Efficient microbial catalyst for upcycling carbon intermediates
- Integrated platform for CO₂ electroreduction and bioconversion

Summary

Progress &

Outcomes

Abbreviations: coordinated organic framework (COF), multi-wall carbon nanotubes (MWCNT)

Approach

Impact

Overview

Management

IOHNS HOPKINS

Potential Industrial Impact

- Companies working to improve CO_2 capture, electroreduction
- Project will demonstrate potential to electroreduce CO₂ into valuable products
- TEA will identify key areas for growth to ensure competitiveness
- Project will demonstrate feasibility of linking electrochemical and biological processes to generate useful products

Abbreviations: techno-economic analysis (TEA)

Management

Overview

Graph: W. L. Theo, J. S. Lim, H. Hashim, A. A. Mustaffa, W. S. Ho, Appl. Energy. 183, 1633–1663 (2016).

Impact

Approach

Progress &

Outcomes

Summary

OHNS HOPKINS

Academic Impact

- Conferences
 - Ruttinger, A. W., Tavakkoli, S., Jordaan, S. M. Evaluating Technology and Market Scenarios for the Deployment of a Profitable Carbon Capture, Utilization, and Storage Process. Applied Energy Symposium, MIT A+B, Virtual. 13-14 Aug 2020. Oral presentation.
 - Betenbaugh, M., et al. Integrating Chemical Catalysis and Biological Conversion of Carbon Intermediates for Deriving Value Added Products from Carbon Dioxide. U.S. DOE BETO Project Peer Review 2021, Virtual. 8-26 Mar 2021. Oral presentation.
- Publications

Management

Approach

Overview

- Ruttinger, A. W., Tavakkoli, S., and Jordaan, S. M. Evaluating Technology and Market Scenarios for the Deployment of a Profitable Carbon Capture and Utilization Process. [In Submission]
- Zachary J. Johnson, Dennis D. Krutkin, Pavlo Bohutskyi, Marina G. Kalyuzhnaya. Metals and Methylotrophy: via Global Gene Expression Studies. In Rare-earth element biochemistry, biology, and bio-applications (Ed. J.ECotruvo). Methods in Enzymology. Volume 650. Chapter 22 (in press).

Summary

Applied Energy Symposium

Impact

Progress &

Outcomes

2021 PROJECT

U.S. DEPARTMENT OF ENERGY BIOENERGY TECHNOLOGIES OFFICE

Key Milestones (Budget Period 2)

Теат	Key Milestone	Current State	Status
Electrocatalysis	1 mM formate at 2 ml/min, ≥60% FE, ≥70% CCE	21 mM, >90% FE at 100 mA/cm ² , >90% CCE	>100%
	1 mM methanol and other C ₁ and C ₂₊	C1 Pathway (Methanol) 55 mM, 20% FE at 100 mA/cm ² , 20% CCE	
	metabolites at 2 ml/min, ≥40% FE, ≥40% CCE	C1/C2 Pathway (Methanol+Acetate) 55 mM methanol, 19 mM acetate, 70% FE, >50% CCE	90%
Bioconversion	<i>M. alcaliphilum</i> 20Z expressing PHB biosynthesis pathway	Individual PHB pathway genes into biocatalyst; enzyme activities verified; integration of pathway under assessment	75%
Optimization	Experimental biocatalyst CCE (%) and yield (g biomass per g substrate)	Highest biomass yield: 0.11-0.13 g DW per g MeOH Highest CCE to biomass: >20% (with MeOH as a substrate)	100%
Integration	Batch-to-batch operating mode, total CCE≥25% (toward biomass), yield ≥0.20 g of biomass per g CO ₂	Integrated batch-to-batch growth characterization Total CCE: ~12% Total yield: ~0.07 g biomass/g CO ₂	50%
TEA/LCA	Complete Aspen model , according to integrated technology for all cases.	Aspen process model integrated for all cases proposed TEA completed for all cases proposed Acetate scenarios and emissions analysis pending	80%

Abbreviations: techno-economic and life cycle analysis (TEA/LCA), Faradaic efficiency (FE), carbon conversion efficiency (CCE), polyhydroxybutyrate (PHB), dry weight (DW)

Approach Impact

Progress & Outcomes

JOHNS HOPKINS Whiting School of Engineering UNIVERSITY Chemical and Biomolecular Engineering

Technical Achievements: Electrocatalysis

Progress &

Outcomes

Summary

 $CO_2 \longrightarrow$ Methanol, Acetate

- Methanol (CH₃OH)
 - 55 mM methanol
 - 20% FE toward methanol
 - 20% CCE toward methanol
- Methanol + Acetate $(C_2H_3O^-)$
 - 55 mM methanol
 - 19 mM acetate
 - 70% FE toward methanol/acetate

Impact

 >50% CCE toward methanol/acetate

Approach

Abbreviations: Faradaic efficiency (FE), carbon conversion efficiency (CCE)

Management

Overview

JOHNS HOPKINS

Technical Achievements: Biosynthesis

Summary

Abbreviations: polyhydroxybutyrate (PHB), methenyl-cyclohydrolase and formaldehyde-activating enzyme (mch/fae), malyl-CoA lyase (mcl), pyruvate dehydrogenase (pdh), phosphoketolase 1, 2, and 3 (xfp1, xfp2, xfp3), 3-ketothiolase (phaA), acetoacetyl coenzyme A reductase (phaB), polyhydroxyalkanoate synthase (phaC), adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD), fructose 6-phosphate (F6P), ribulose 5-phosphate (Ru5P), coenzyme A (CoA),

Progress &

Outcomes

Overview

Management

Approach

Impact

Whiting School of Engineering Chemical and Biomolecular Engineering

phaC

OHNS HOPKINS

UNIVERSITY

Technical Achievements: Optimization

Methanol, Acetate

Biomass, PHB

Impact

- >20% baseline CCE to biomass on methanol
- 0.13 baseline yield (g dry weight/g methanol)

Approach

 Effect of dilution rate on growth characteristics in continuous culture

Abbreviations: polyhydroxybutyrate (PHB), carbon conversion efficiency (CCE)

Management

Overview

Progress & Outcomes

Summary

Johns Hopkins

UNIVERSITY

Technical Achievements: Integration

Cell culture

Impact

- CCE: ~12%
- Yield: ~0.07 g biomass/g CO₂
- Demonstration of biomass production on electrocatalysis product

Cell growth on methanol/acetate (25 mM)

Abbreviations: polyhydroxybutyrate (PHB), carbon conversion efficiency (CCE)

Approach

Electrocatalysis

Management

Overview

C,H.O

Progress & Outcomes

Summary

JOHNS HOPKINS

Technical Achievements: TEA/LCA

Overview

Management

Methanol, Acetate

Biomass, PHB

Progress &

Outcomes

- ASPEN model developed
- TEA completed for proposed scenarios
- Currently analyzing impact of acetate production
- Evaluating emissions implications

JOHNS HOPKINS

UNIVERSITY

Summary

Abbreviations: polyhydroxybutyrate (PHB), techno-economic analysis and life cycle analysis (TEA/LCA)

Impact

Approach

Summary

Overview

- <u>Overview</u>: Project seeks to develop an efficient and integrated electrocatalytic-bioconversion process to upgrade CO₂
- <u>Management</u>: Process development and risk mitigation are split by topic expertise
- <u>Approach</u>: Electroreduction of CO₂ to methanol and engineered microbial growth on non-ideal substrates are both the project's biggest challenges and innovations
- <u>Impact</u>: Project success will have substantial impact as the world continues to adopt CO₂ upgrading technologies
- <u>Progress & Outcomes</u>: Each team has made significant progress toward their milestones goals and are addressing risks appropriately

Additional Slides

For DOE evaluation

Responses to Previous Reviewers' Comments

Not applicable; project has not been previously peer-reviewed.

Publications, Patents, Presentations, Awards, and Commercialization

• Conferences

- Ruttinger, A. W., Tavakkoli, S., Jordaan, S. M. Evaluating Technology and Market Scenarios for the Deployment of a Profitable Carbon Capture, Utilization, and Storage Process. Applied Energy Symposium, MIT A+B, Virtual. 13-14 Aug 2020. Oral presentation. Video recording URL: https://www.bilibili.com/video/BV1CK4y1Y7vN
- Betenbaugh, M., et al. Integrating Chemical Catalysis and Biological Conversion of Carbon Intermediates for Deriving Value Added Products from Carbon Dioxide. U.S. DOE BETO Project Peer Review 2021, Virtual. 8-26 Mar 2021. Oral presentation.
- Publications
 - Ruttinger, A. W., Tavakkoli, S., and Jordaan, S. M. Evaluating Technology and Market Scenarios for the Deployment of a Profitable Carbon Capture and Utilization Process. [In Submission]
 - Zachary J. Johnson, Dennis D. Krutkin, Pavlo Bohutskyi, Marina G. Kalyuzhnaya. Metals and Methylotrophy: via Global Gene Expression Studies. In Rare-earth element biochemistry, biology, and bio-applications (Ed. J.ECotruvo). Methods in Enzymology. Volume 650. Chapter 22 (in press).
- Current technology transfer or commercialization efforts awaiting proof-of-concept

