

Co-Optimization of **Fuels & Engines**

DOE Bioenergy Technology Office (BETO) 2021 Project Peer Review

March 16th, 2021 Co-Optimization of Fuels & Engines Technology Area

Naphthenic Biofuel-Diesel Blend for Optimizing Mixing Controlled Compression Ignition Combustion

Dimitris Assanis, SUNY - *Stony Brook* (PI) Ofei Mante, *RTI International*

> Award Number: DE-EE0008481 (WBS 3.5.1.18)

better fuels | better vehicles | sooner



Project Overview

Project Overview

Bio-blendstock oils rich in naphthenes will be produced using the catalytic fast pyrolysis (CFP) + hydrotreating pathway and evaluated *for the first time* as a blendstock fuel for MD/HD MCCI engines currently operating on No.2 Diesel fossil fuel.

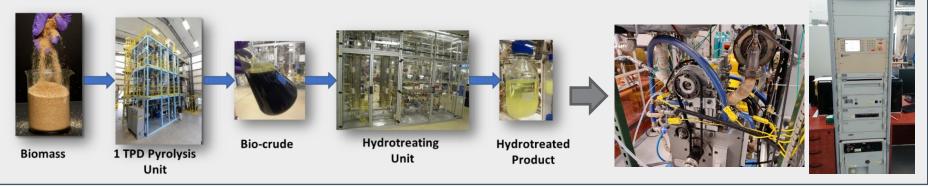
Goals

- Demonstrate that the naphthenic bio-blendstock can be blended with diesel fuel and the mixture meets ASTMD975 specifications
- Investigate the effects of using blended fuel in diesel engine efficiency and emissions
- Show lifecycle GHG emissions reduction of 50% compared to petroleum diesel

1 - Management

- **PI Dimitris Assanis** is responsible for technical progress including engine experimental testing, project management and reporting
- **Co-PI Ofei Mante** is responsible for guiding surrogate fuel formulation, bioblendstock production and distillation at RTI, and managing RTI's tasks
- Gina Fioroni, National Renewable Energy Laboratory - project team interfaces with an advisor from the national laboratory Co-Optima team

Та	ask	Description	Entity
1		Evaluation of Napthenic Bio-blendstock from Hydrotreated Products	RTI
2		Investigation of Surrogate Fuel Properties and Effects on Combustion	SBU
3	(<u>x</u>)	Production, Qualification, and Verification of the Bio- blendstocks	SBU/ RTI
4		Production of Napthenic Bio-blendstock	RTI
5		Detailed Engine Testing of Blended Fuels	SBU
6		Techno-Economic Analysis and Life Cycle Assessment	RTI
7	(<u>x</u>)	Technology Transfer and Outreach	SBU/ RTI



2 – Approach: Technical Approach

- Leverage ongoing process development of the catalytic pyrolysis technology and hydroprocessing at RTI to produce a naphthenic fuel that meets ASTM D975 to improve cold weather properties and sooting propensity of diesel fuels.
- Characterize the bio-blendstock and use surrogate fuels to understand the impact of major functional groups of compounds on diesel fuel properties engine combustion when blended up to 50% by volume.
- Perform experimental testing on a research diesel engine to evaluate the blending effects on MCCI combustion.
- Perform Techno-Economic Analysis (TEA) and Life-Cycle Assessment (LCA) of the biofuel production to demonstrate the ability of the proposed bio-blendstock to reduce GHG emissions by at least 50% compared to conventional petroleum-derived diesel.

2 – Approach: Project Overview

Napthenic Distillate Production (Catalytic Fast Pyrolysis + Hydrotreating)

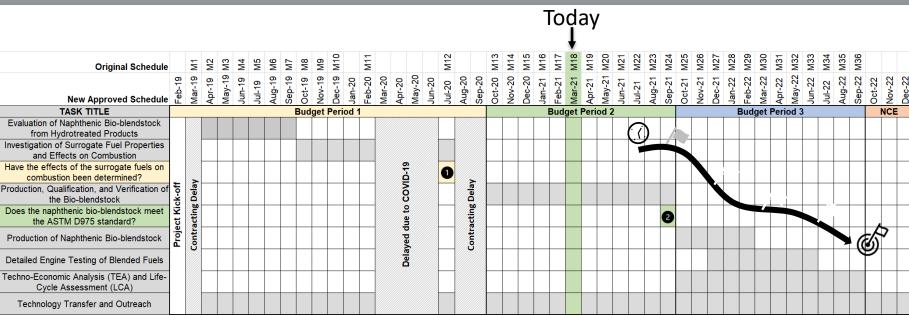
Internal Comb. Engine Performance & Emissions Characterization Recovered Bio-blendstock Chemical Component Characterization

Pure Compound Surrogate Fuel (SF) Formulation

Challenges

- Lack of fundamental understanding of the influence of different chemical specifies in bioblendstocks on diesel fuel performance, MCCI combustion and emissions
- Ensure that the produced bioblendstock quality meets ASTM specifications
- Upscaling bio-blendstock production capacity (surrogate fuel approach required)
- 4. Demonstrating emissions reduction in MCCI combustion at similar thermal efficiency

3 - Impact



- Development of an advanced biofuel that can be sustainably produced domestically (improved energy security)
- Naphthenic rich bio-blendstocks can yield energy content parity fuel relevant to long-haul trucking (drop-in replacement)
- Acceleration of advanced biofuels deployment
- Reduction of fossil fuel consumption (blends up to 50%)
- Decrease in transportation GHG emissions (up to 50%)
- Cleaner air quality from decreased sooting propensity of fuel

The successful demonstration of this research project will develop a biofuel-based pathway to reduce the use of fossil-derived diesel fuel in transportation today and promote co-optimized high efficiency engines that achieves cleaner vehicles sooner.

4 – Progress and Outcomes

Go / No-Go Decision Description

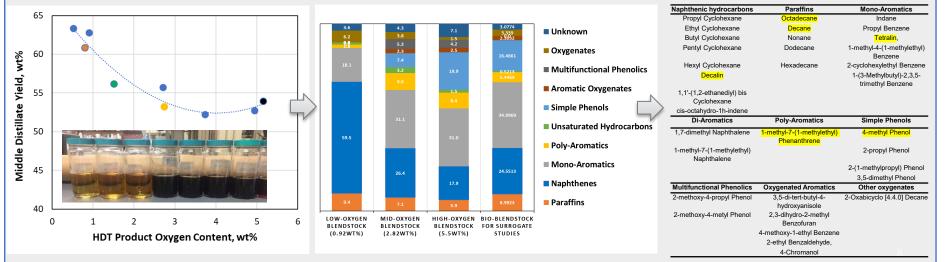
Validate the potential of the naphthenic bio-blendstock to improve the cold weather behavior (pourpoint, cloudpoint) and decrease the sooting propensity of No.2 diesel based on fuel characterizations and physical property measurements.

Verification that the naphthenic bio-blendstock meets ASTM D975 specification and improves the cold weather behavior (pourpoint, cloudpoint) and decreases the sooting propensity of No.2 diesel.

Anticipated July 2021

7/09/2020

Date

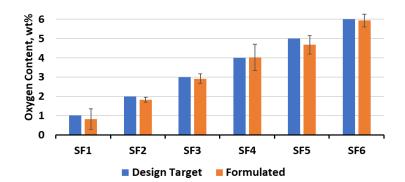


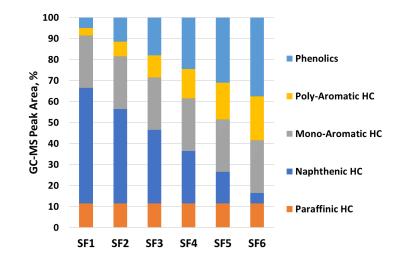
4 – Progress: Naphthenic Bio-blendstock from Hydrotreated Products

Objective: Production and characterization of bio-blendstock oils of varying oxygen content to understand the compositional species make-up.

- 1. Accomplishments: Bio-blendstocks were recovered from 9 hydrotreated oils with oxygen contents varying between 0.5 wt% and 6 wt% from a bench-scale PILODIST laboratory distillation unit.
- 2. GC-MS compositional analysis of bio-blendstocks was performed.
- 3. Selected pure compounds to represent the different classes of chemical components.

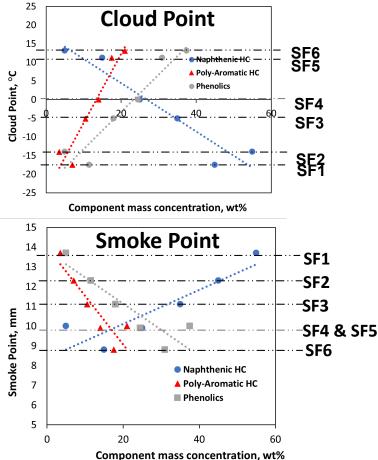
4 – Progress: Surrogate Fuel Studies




Objective: Design Surrogate fuels using pure components to match the various compound class distribution found in the bio-blendstock. The design property target used for the formulation were oxygen content and the C/H ratio.

Accomplishments: Six surrogate fuels (SF) were formulated with oxygen contents varying from 1 to 6 wt%.

Chemical	Wt.%						
Compound	SF1	SF2	SF3	SF4	SF5	SF6	
4-Methylphenol	5.0	11.5	18.0	24.5	31.0	37.5	
Phenanthrene	3.5	7.0	10.5	14.0	17.5	21.0	
Tetralin	25.0	25.0	25.0	25.0	25.0	25.0	
Decalin	55.0	45.0	35.0	25.0	15.0	5.0	
Octadecane	7.0	6.0	5.0	4.0	3.0	2.0	
Decane	4.5	5.5	6.5	7.5	8.5	9.5	


Oxygen contents (1, 2, 3, 4, 5, and 6 wt%) of the six surrogate fuels formulated.

4 – Progress: SF Fuel Chemistry Relations on Cloud Point (CP) and Smoke Point (SP)

Objective: To understand chemical component effect on fuel properties

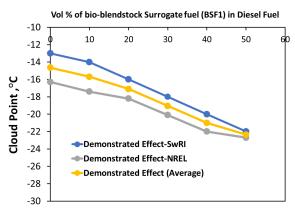
Naphthenic HC:

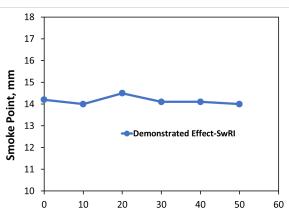
- Cloud Point ↓ (Cold-weather properties ↑)
- Smoke Point ↑ (Sooting propensity ↓)

Phenolics:

- Cloud Point ↑ (Cold-weather properties ↓)
- Smoke Point ↓ (Sooting propensity ↑)

Poly-Aromatic HC:


- Cloud Point \uparrow (Cold-weather properties \downarrow)
- Smoke Point ↓ (Sooting propensity ↑)


Comments: The concentration of paraffinic HC and mono-aromatics were kept constant across the surrogate fuels as observed with bio-blendstocks with different oxygen contents.

10

4 – Progress: SF1 / No.2 Diesel Blend Effects on Cloud Point (CP) and Smoke Point (SP)

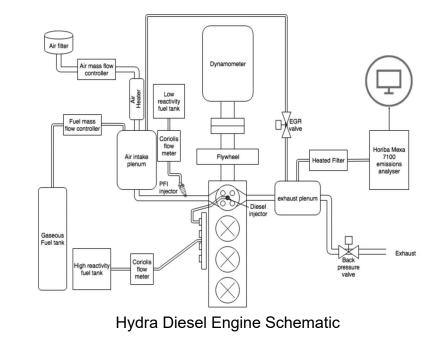
Objective: To understand blend ratio effects on fuel properties

Cloud Point:

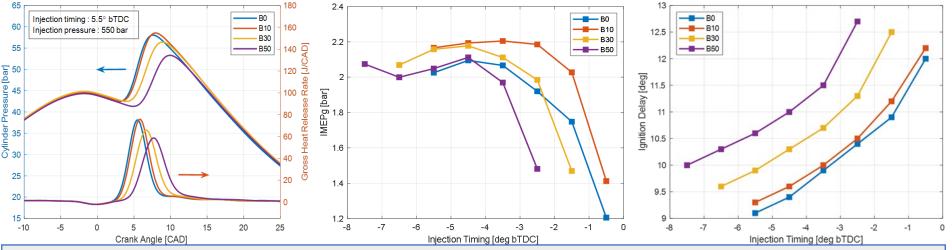
The prepared bio-blendstock surrogate fuel demonstrated the proposed effect by reducing the cloud point of the No.2 research diesel fuel by up to 8 °C when blended up to 50% by volume

Smoke Point:

The prepared bio-blendstock surrogate fuel did not increase the spoke point of No.2 diesel by up to 7 mm points when blended up to 50% by volume.


Mitigation: Lower sooting propensity pure compounds selected for BP2. Aromatic HC content $\downarrow \& \uparrow$ Napthenic content decalin \rightarrow butylcyclohexane & propylcyclohexane).

Preliminary Engine Testing Methodology



Approach:

- Preliminary experimental studies were conducted on the Ricardo Hydra diesel engine
- Intake pressure and temperature were kept at ambient with fixed engine speed of 1200 RPM
- Injection pressure fixed at 550 bar
- Injection timing sweep performed until combustion was either knock-limited or misfire occurred

4 – Progress: Effects of Fuel Inj. Timing on Cyl P., HRR, Load & Ign. Delay

Results:

- Combustion B10 (10% blend) yields highest overall pressure trace and heat release profile.
- Combustion B50 yields the lowest pressure trace and smallest heat release profile.
- B10 and B30 resulted in overall higher load than B0.
- Ignition delay decreases with advancing fuel injection timing and increases with blend ratio. Mixing vs. kinetic effect? The longer ignition delay of surrogate fuel blends could be a result from the higher viscosity (mixing effect).

4- Progress: Effects of Fuel Inj. Timing on NOx, THC, & CO Emissions

Results:

- NOx emissions increased as the fuel injection timing is advanced from TDC due to higher peak temperatures in the combustion chamber.
- THC emissions decreases as the fuel injection timing is advanced from TDC.
- CO emissions decrease as fuel injection timing advances (and inversely proportional to combustion efficiency)
- B0 & B10 resulted in overall similar emissions levels.

Summary / Lessons Learned

- **1. Three naphthenic blendstocks** boiling within mid-distillate (diesel) fuel range (160-360°C) from hydrotreated products containing oxygen contents <1%, 3%, and 6% were recovered for characterization.
- 2. The results show that the low-oxygen bio-blendstock has the potential of **meeting ASTM D975 specification** for diesel.
- 3. Surrogate studies show that **aromatic hydrocarbons** and **phenolics** have **negative impact** on **sooting** propensity and **cold weather** properties of diesel fuel.
- 4. The prepared bio-blendstock surrogate fuels demonstrated a **reduction in cloud point by up to 8 °C** when blended up to 50% by volume in No.2 research diesel .
- 5. Blending of the prepared bio-blendstock surrogate fuel with No.2 research diesel up to 50% by volume did not enhance the sooting propensity. However, the surrogate studies show that reducing the concentration of aromatics to less than 10 wt% has the potential of improving the sooting propensity.
- 6. Bio-blendstock with high concentration (at least 70wt%) of naphthenic hydrocarbons can be used to improve both sooting propensity and cold weather properties of diesel fuel.
- 7. There is also opportunity to take advantage of certain oxygenated aromatics such as methoxyphenols and simple phenols to improve sooting propensity as predicted by NREL YSI estimator model.
- 8. Preliminary engine testing was successfully performed to characterize the combustion performance and emissions generated using bio-blendstock surrogate / No.2 research diesel fuel blends (up to 50% by vol).

Quad Chart

Timeline

- Project Start: 02/01/2019
- Project End: 12/31/2022

	Budget Period 1	Budget Period 2	Budget Period 3	Total Funding
DOE Funding	\$397,658	\$445,930	\$643,524	\$1,487,112
Project Cost Share	\$193,317	\$140,880	\$141,343	\$475,540

Project Partner:

RTI International

Project Goal

 To investigate and demonstrate the use of a naphthenic bio-blendstock as a fuel for MD/HD MCCI engines.

End of Project Milestone

- Demonstrate that the naphthenic bio-blendstock can be blended with diesel fuel and the mixture meets ASTMD975 specifications
- Show lifecycle GHG emissions reduction of 50% compared to petroleum diesel

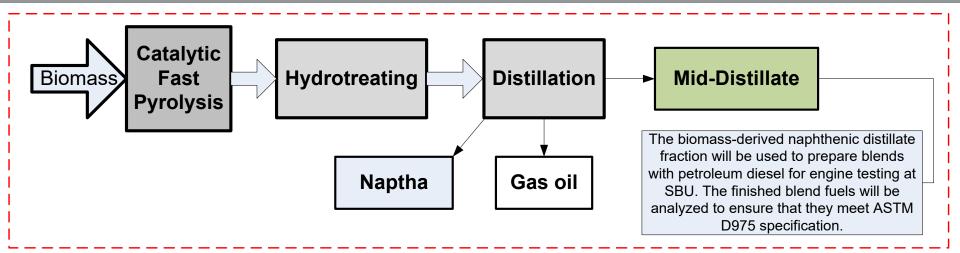
Funding Mechanism

- Fiscal Year 2018 Funding Opportunity Announcement (FOA) Number DE-FOA-0001919
- Area of Interest 5-b: Co-Optimization of Engines & Fuels – Bio-blendstocks to Optimize Mixing Controlled Compression Ignition Engines

17

Additional Slides

Presentations


• Co-Optima All Hands Annual Meeting, Virtual, July 28th, 2020

Publications

- 1 journal manuscript submitted/in-review from BP1 activities
 - 1 additional manuscript with expected submission by May 2021
- >2 journal manuscripts expected for BP2 & BP3 activities

Bio-blendstock Production Pathway

- Biocrude is produced by catalytic fast pyrolysis at 475-525 °C using a non-zeolite alumina in RTI's 1TPD unit.
- The biocrude is hydrotreated over a sulfided catalyst at 2000 psig and at 300 °C in RTI's hydroprocessing unit into a biofuel product.
- The biofuel is distilled to recover naphtha (< 160 °C); mid-distillate range (160-360°C), and gas oil (>160 °C) fractions.
- The mid-distillate fraction is referred as the naphthenic bio-blendstock in the project.

BP1 Milestones Completed

Recipient Name: SUNY - Stony Brook University Project Title: Naphthenic Biofuel-Diesel Blend for Optimizing Mixing Controlled Compression Ignition Combustion											
ner ,	- 	Milestone (Go/No-Go Decision		imizing Mixing Controlled Cor Milestone Description (Go/No-Go Decision	npression Ignition Combustion Milestone Verification Process (What, How, Who, Where)	Anticipated Date from Project Start					
Task Numł	Applicable)	Туре	Number	Criteria)		Months	Quarters				
1.0	Evaluation of Naphthenic Bio-blendstock from Hydrotreated Products										
1.1	Distillation of Hydrotreated Products	Milestone	1.1	Complete preparation of three naphthenic bio- blendstocks	Report from RTI documenting the preparation of three naphthenic bio- blendstocks from hydrotreated products of $<1\%$, 3%, and 6% oxygen contents	3	1				
1.2	Characterization of naphthenic bio- blendstocks	Milestone	1.2	Complete chemical and physical analysis of naphthenic bio-blendstocks	Analysis report from RTI showing the chemical composition and physical properties of the three naphthenic bio- blendstocks.	6	2				
2.0	Investigation of Surrogate	Fuel Propert	ies and Effec	ctson Combustion							
2.1	Preparation of naphthenic surrogate fuels	Milestone	2.1	Prepare surrogate fuels with key molecules prepared for experimental testing	SBU will prepare surrogate fuels for characterization and engine testing	9	3				
2.2	Fuel property characterization of naphthenic surrogate fuels	Milestone	2.2	Establish molecular structure-fuel property relationships	Report from SBU showing molecular structure-fuel property relationships. Documentation of surrogate fuels that meets ASTM specification and when blended up to 50% by volume into No.2 diesel can potentially lower the cloud/point by at least 8 °C and improve soot propensity by increasing the spoke point by at least 7 mm points.	12	4				
2.3	Preliminary engine testing of surrogate fuels	Milestone	2.3	Complete preliminary engine testing of surrogate fuels.	Report from SBU showing quantified effects of fuel composition on heat release profile and emissions formation.	12	4				

BP2 Milestones & Go/No-Go Decision 2

Recipient Name: SUNY - Stony Brook University										
Project Title: Naphthenic Biofuel-Diesel Blend for Optimizing Mixing Controlled Compression Ignition Combustion										
Task Number	Task Title or Subtask Title (If Applicable)	Milestone (Go/No-Go Decision Point)		Milestone Description (Go/No-Go Decision	Milestone Verification Process (What, How, Who, Where)	Anticipated Date from Project Start				
³ L		Туре	Number	Criteria)		Months	Quarters			
3.0	Production, Qualification, and Verification of the Bio-blendstocks									
3.1	Production of naphthenic bio-blendstock	Milestone	3.1	Complete production of at least 1 gallon of naphthenic bio-blendstock	Minimum of 1 gallon of naphthenic bio- blendstock produced by RTI	15	5			
3.2	Detailed Engine Testing of Surrogate Fuels	Milestone	3.2	Complete experimental testing of the three best surrogate fuels.	Determination of the effects of surrogates on MCCI combustion quantified by analyzing engine experimental data.	18	6			
3.3	Full fuel characterization and analysis	Milestone	3.3	Complete fuel compositional analysis for the naphthenic	Report from a selected commercial lab showing that completion of fuel characterization and that the naphthenic fuel meets the ASTM D975 specification	21	7			
3.4	Independent verification of fuel properties and performance	Milestone	3.4	Submission of a minimum of 500 mL of naphthenic bio- blendstock to the national laboratory Co-Optima team.	Report from the national laboratory Co- Optima team showing receipt and verification of the naphthenic bio- blendstock	24	8			
		Go/No Go Decision Point	GNG2	 Verification that the naphthenic bio-blendstock meets ASTM D975 specification and improves the cold weather behavior (pourpoint, cloudpoint) and decrease the sooting propensity of No.2 diesel. Fuel properties of the naphthenic bio-blendstock verified by the national laboratory Co-Optima to meet ASTM D975 standards. Blending of 50% of the naphthenic bio-blendstock by volume lowers the cloud point/pour point of No.2 diesel by at least 8 °C and improves soot propensity by increasing the spoke point of No.2 diesel by at least 7 mm points. Completion of detailed engine experimental testing. 		24	8			

BP3 Milestones

Recipient Name: SUNY - Stony Brook University										
Project Title: Naphthenic Biofuel-Diesel Blend for Optimizing Mixing Controlled Compression Ignition Combustion										
Task Number	Task Title or Subtask Title (If	Milestone (Go/No-Go Decision Point)		Milestone Description (Go/No-Go Decision	Milestone Verification Process (What, How, Who, Where)	Anticipated Date from Project Start				
L ³	Applicable)	Туре	Number	Criteria)		Months	Quarters			
4.0	Production of Naphthenic Bio- blendstock	Milestone	4.1	Complete production of naphthenic bio-blendstock	Minimum of 10 gallons of naphthenic bio-blendstock produced by RTI	27	9			
5.0	Detailed Engine Testing of blended Fuels	Milestone	5.1	Complete detailed engine experimental testing of blended fuels	Report from SBU documenting experimental data showing effects on engine efficiency and emissions	30	10			
5.0	Detailed Engine Testing of blended Fuels	Milestone	5.2	Demonstrate effects of using the naphthenic fuel on MCCI combustion.	Report from SBU showing changes in engine efficiency and emissions formation due to the naphthenic fuel.	33	11			
6.0	0 Techno-Economic Analysis and Life Cycle Assessment									
6.1	TEA	Milestone	6.1	Complete TEA	Report from RTI on the TEA of the production of the bio-blendstock will be provided to SBU	36	12			
6.2	LCA	Milestone	6.2	Complete LCA	Report from RTI on the LCA production of the bio-blendstock and engine end-use will be provided to SBU	36	12			