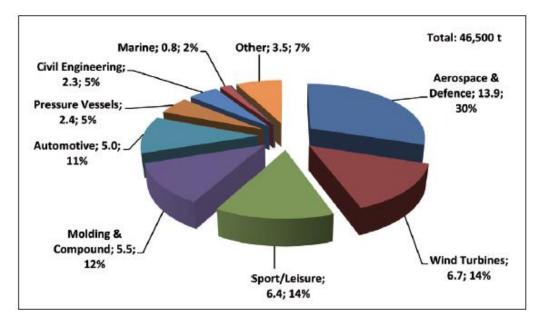


Upcycling of CFRP Waste: Viable Eco-friendly Chemical Recycling and Manufacturing of Novel Repairable and Recyclable Composites

March 8, 2021

Technology Area Session: Designing Novel Methods for Deconstructing and Upcycling Existing Plastics


> Jinwen Zhang Washington State University

Project Overview - Importance

2

2013 Global carbon fiber (CF) demand by application in thousand tons (Reinforced Plastics, 9/2014)

The fate of CFRP products at the end of life

Recycle Reuse compositesworld.com cscarbonfiber.co vachtharbour.com acompositi co

92.9K tons in 2015, expected to reach 269.5k tons (\$27.98B) by 2024, growing at a CAGR of 12.5% from 2016 to 2024 (researchandmarkets.com)

Converting the recovered CF to new products uses less than 10% of the energy required to produce the original CF and leads to nearly an 85% reduction in CO_2 emissions. --- Composites World, 2/2019

Project Overview - CFRP recycling methods in literature

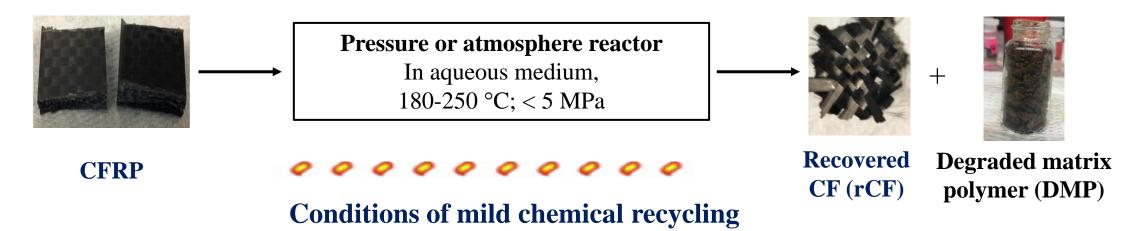
- Mechanical recycling: shredded or ground to particles
 - Low value (virgin CF \$33 66/kg vs. ground CFRF \$5/kg)

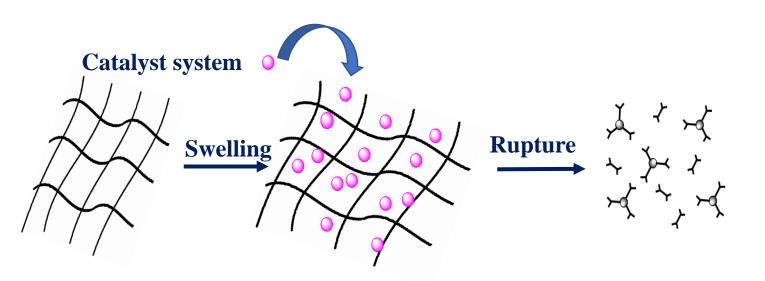
Thermal degradation (Pyrolysis, Fluidized-bed process, etc.)

- Energy intensive
- secondary waste from the degraded polymers
- Strength reduction: $\geq 20\%$ for CF, $\geq 50\%$ for GF
- Virgin CF \$33-66/kg; recycled CF \$13-19/kg
- **•** Acid digestion (in strong acid, e.g., sulfuric acid, nitric acid)
 - Lack of use of the degraded polymer
 - Generate a lot of waste acid

Chemical treatment in near-critical or supercritical fluid

- Very high temperate and pressure
- Lack of use of the degraded polymer
- Time consuming (heating, cooling, and reaction)


Earlier chemical methods in the literature generally require severe conditions, results in secondary waste and/or lack effective utilization of the decomposed matrix polymers; while mechanical recycling gives low value fillers and energy consuming as well.



Mild Chemical Degration in aqueous medium

Lower temperature & pressure Little damage to CF Utilization of both rCF & DMP Little or no secondary waste

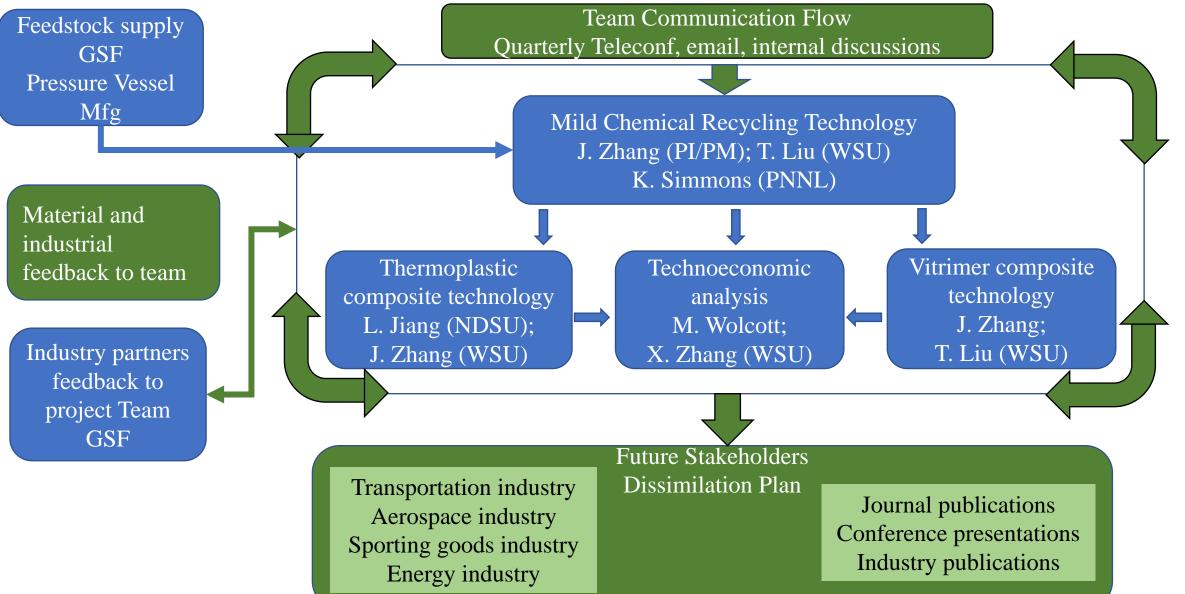
Illustration of mild chemical recycling process

Overall goal

To develop an eco-friendly, energy-efficient and cost-effective chemical recycling technology in breakdown of the matrix polymer network structure and makes use of <u>**both**</u> recovered CF and decomposed matrix polymer in new composite manufacturing.

Specific objectives

1) Develop pretreatment methods that pre-swell the CFEP waste or decrease its glass transition temperature so that catalyst solution can efficiently penetrate the substrate during the subsequent chemical degradation;


2) Chemically degrade the pretreated CFEP under the catalysis of organic zinc salt in aqueous medium and at temperature \leq 250 °C;

- 4) Develop new thermoplastic composites using the recyclate as reinforcement;
- 5) Develop vitrimer composites using the recyclate as a major feedstock.

Management

This project will address the most significant cost/technology barriers for recycling of thermosets and enhance market penetration upon the attainment of following breakthroughs:

- Establish a mild chemical recycling platform for CFEP to reduce waste and save energy;
- Utilize both the recovered CF and decomposed matrix polymer in preparation of new high-value and high-volume polymer composites;
- Contribute to reduction of carbon footprint of CFRP manufacturing by reuse of recovered CF.

Approach

Development of Pretreatment

- Pre-swell automobile CFEP at elevated temperature and ambient pressure in acetic acid solution.
- Pre-swell aerospace CFEP at elevated temperature and pressure in acetic acid solution.
- Delaminate aerospace CFEP and decrease its glass transition temperature by thermal energy.

Objectives:

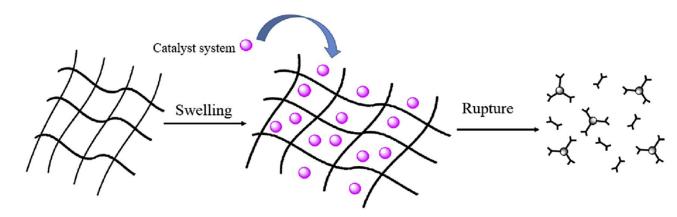
- Achieve the delamination of automobile CFEP at elevated temperature under atmospheric pressure.
- Achieve the delamination of aerospace CFEP at elevated temperature in batch pressure reactor.
- Decrease the T_g of aerospace CFEP for at least 15 °C using thermal energy.

Acid pretreatment at ambient pressure

Acid pretreatment at high pressure

Thermal treatment under inert atmosphere

Approach

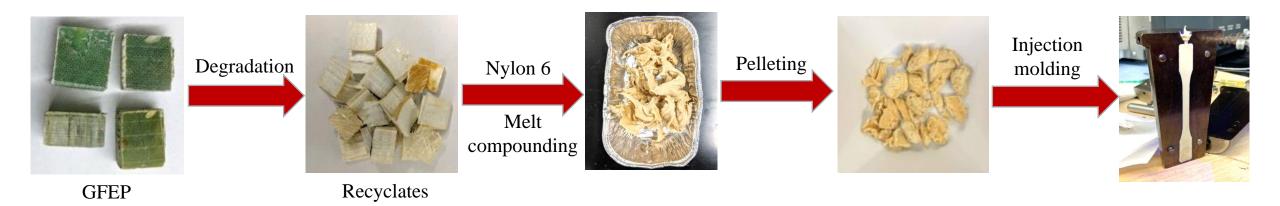


Decomposition

- Decompose swollen automobile CFEP with zinc acetate aqueous solution in pressure reactor.
- Decompose swollen or thermally pretreated aerospace CFEP with zinc acetate aqueous solution in pressure reactor.
- Recover decomposed polymer and analyze the decomposition process.

Objectives:

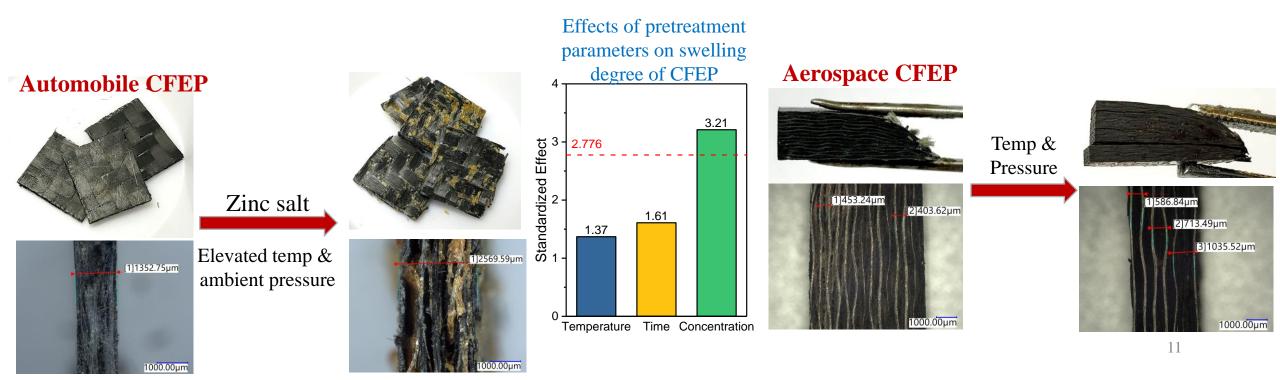
- Achieve the degradation of automobile CFEP at temperature ≤ 220 °C using ≤ 10 wt% of zinc salt.
- Achieve the degradation of aerospace CFEP at temperature ≤ 250 °C using ≤ 20 wt% of zinc salt.
- Reuse the recovered catalyst solution for at least 3 times.



Zhang, et al. Polymer Degradation and Stability 139 (2017): 20-27.

Project Verification – in period 1, the preliminary results listed in the proposal were reexamined and reconfirmed including:

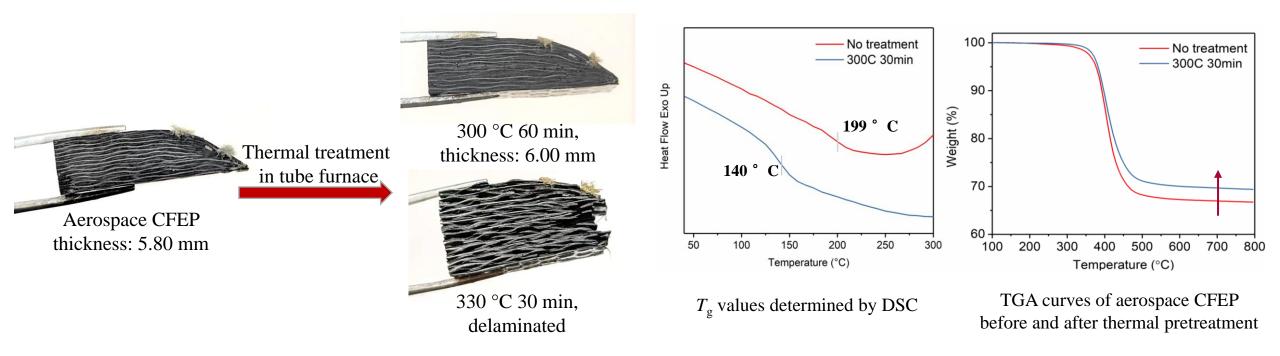
- Degradation of wind turbine GFEP in zinc salt catalyst aqueous solution (Milestone 1.1 completed).
- Pre-swelling of wind turbine GFEP in acetic acid (Milestone 1.2 completed).
- Preparation of Nylon 6 composites with the recyclates (Milestone 1.3 completed).
- Preparation of new epoxy using decomposed polymer as reactive ingredient (Milestone 1.4 completed).


Conclusion:

Chemical recycling of CFEP and GFEP and the reuse of recyclates for new materials can be achieved, and Target 1 of the project is completed.

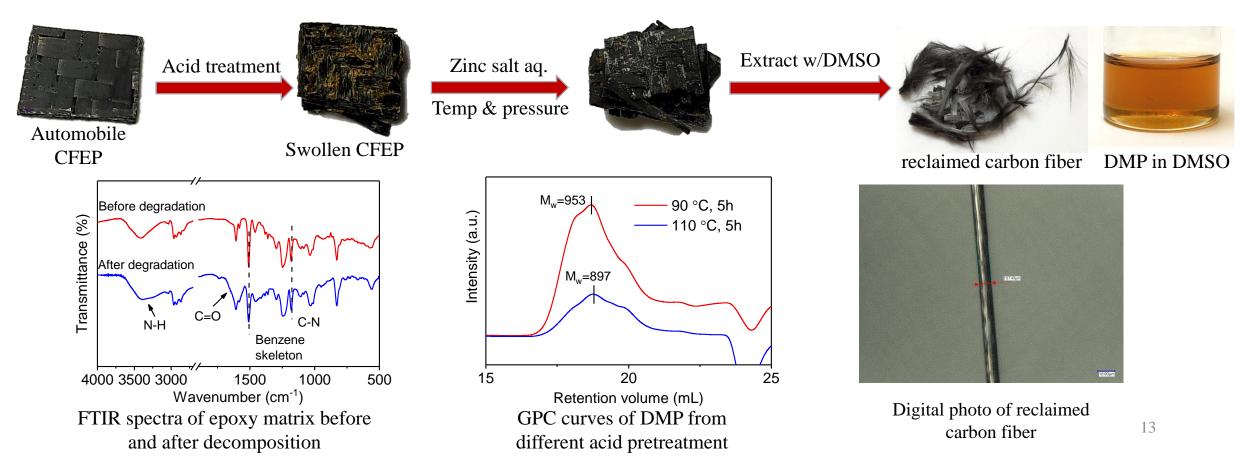
WASHINGTON STATE UNIVERSITY

Acid pretreatment (Milestone 2.1 completed)


- Investigated the effects of acetic acid concentration, treatment temperature and time on the swelling of CFEP.
- Examined the delamination of CFEP with peel tests.
- Achieved the delamination of automobile CFEP at temperature ≤ 120 °C within 3 hours under atmospheric pressure.
- Achieved the delamination of aerospace CFEP at temperature ≤ 200 °C within 3 hours in a pressure reactor

Thermal pretreatment (Milestone 2.2 completed)

- Investigated the effects of thermal pretreatment time and temperature on the weight loss and T_g change of aerospace CFEP.
- Decreased the T_g of aerospace CFEP from 199 °C to 140 °C by thermal treatment at 300 °C for 30 min

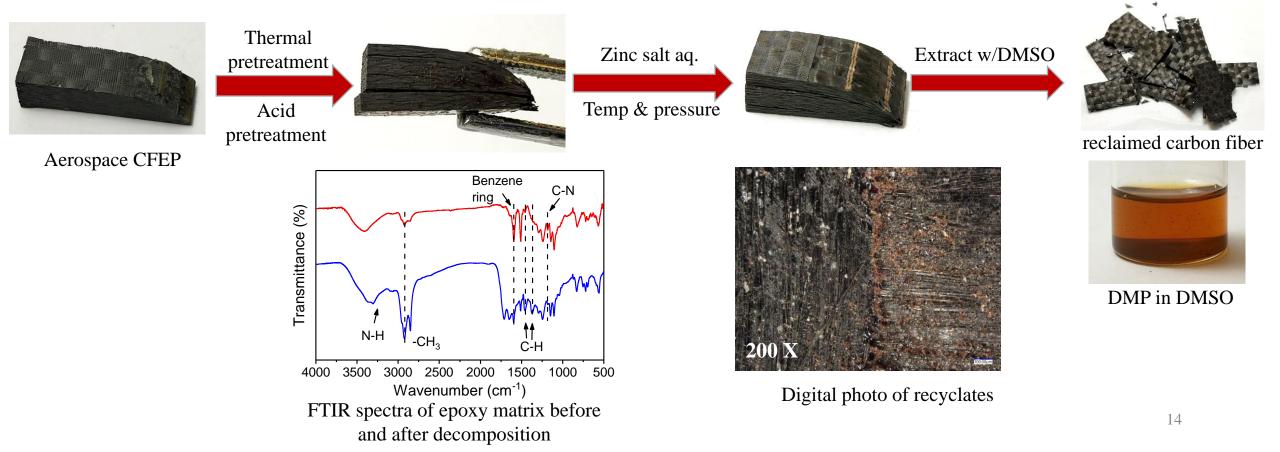


Decomposition of automobile CFEP

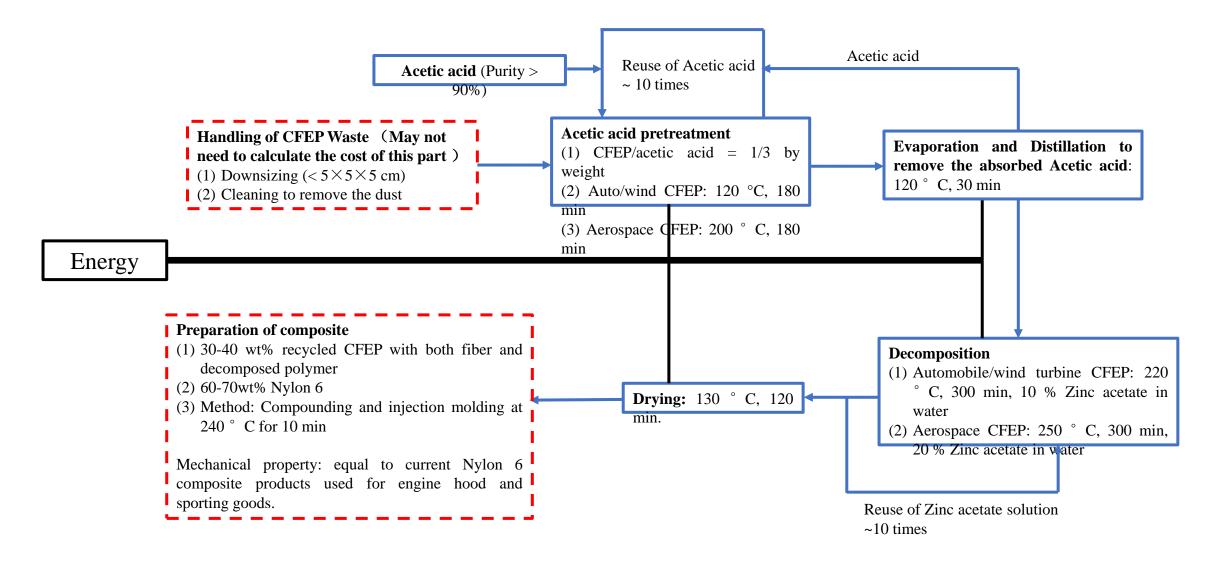
Achieved degradation of automobile CFEP at temperature ≤ 220 °C using ≤ 10 wt% of zinc salt (Milestone 3.1 partially completed).

WASHINGTON STATE I INIVERSITY

• Characterized decomposed matrix polymer (DMP) with FTIR and GPC. DMP possesses multiple functional chemical groups and the molecular weight of DMP is \leq 5000 Da (**Milestone 3.2 partially completed**).

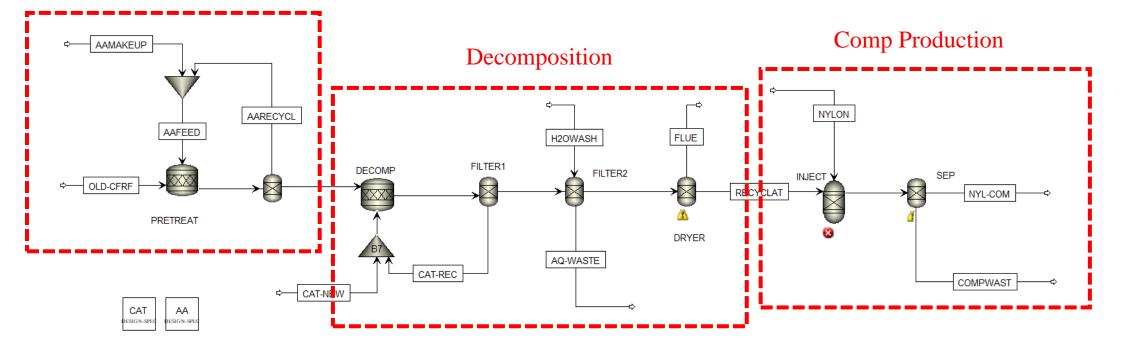


Decomposition of aerospace CFEP


Achieved degradation of aerospace CFEP at temperature ≤ 250 °C using ≤ 20 wt% of zinc salt (Milestone 3.1 partially completed).

WASHINGTON STATE I INIVERSITY

• Characterized decomposed matrix polymer (DMP) with FTIR. DMP possesses multiple functional chemical groups (**Milestone 3.2 partially completed**).



Process Diagram

Aspen Process Diagram

Pretreatment

Publications and pending patents

- Tuan Liu, Cheng Hao, Lin Shao, Wenbin Kuang, Lelia Cosimbescu, Kevin L. Simmons, Jinwen Zhang. Carbon Fiber Reinforced Epoxy Vitrimer: Robust Mechanical Performance and Facile Hydrothermal Decomposition in Pure Water, *Macromolecular Rapid Communications (2020)*, DOI: 10.1002/marc.202000458
- Jinwen Zhang, Tuan Liu, Junna Xin. Methods for chemical degradation of epoxies using organic salts as catalysts, US Pat. No. 10,696,815 B2

Macromolecular Rapid Communications www.mrc-journal.de

Carbon Fiber Reinforced Epoxy Vitrimer: Robust Mechanical Performance and Facile Hydrothermal Decomposition in Pure Water


Tuan Liu, Cheng Hao, Lin Shao, Wenbin Kuang, Lelia Cosimbescu, Kevin L. Simmons, and Jinwen Zhang*

				US010696815B2	
8 8	United States Patent Zhang et al.		(10) Patent No.: US 10,696,815 B2 (45) Date of Patent: Jun. 30, 2020		
(54)		DS FOR CHEMICAL DEGRADATION THES USING ORGANIC SALTS AS STS	(52)	U.S. Cl. CPC	
(71)	Applicant:	WASHINGTON STATE UNIVERSITY, Pullman, WA (US)	(58)	Field of Classification Search USPC 523/220 See application file for complete search history.	
(72)	Inventors:	Jinwen Zhang, Pullman, WA (US); Tuan Liu, Pullman, WA (US); Junna Xin, Pullman, WA (US)	(56)	References Cited U.S. PATENT DOCUMENTS	
(73)	Assignee:	WASHINGTON STATE UNIVERSITY, Pullman, WA (US)	2003	3/0098649 A1* 5/2003 Murai C08G 59/1405 313/512	

Summary

- Pretreatment of CFEP is an effective and novel approach to facilitate degradation of matric polymer of CFEP under mild condition;
- Pretreatment of CFEP in acetic acid s(solution) or under high temperature leads to initial delamination;
- Depolymerization of the matrix polymer is achieved in relatively low concentration of organic zinc salt solution.

Quad Chart Overview (Competitive Project)

Timeline

Project start date:	10/01/2019
• Project end date:	12/31/2022

	FY20 Costed	Total Award
DOE Funding	(10/01/19 – 9/30/20) \$ 99,803.98 (WSU) \$26,663.96 (NDSU) \$63,938 (PNNL)	(negotiated total federal share) \$ 1,249,804
Cost Share	\$ 33,912.72	\$ 442,066

Project Partners

- North Dakota State University
- Pacific Northwest National Laboratory
- Global Fiberglass Solution

Project Goal

Introduce an eco-friendly and economically viable chemical recycling technology for CFEP, and reuse of the recyclate in new composites.

End of Project Milestone

- Identify a simple eco-friendly pretreatment method and an alternative thermal pretreatment method
- Identify optimum reaction and processing parameters for mild chemical decomposition
- Develop thermoplastic composites using recyclate
- Develop vitrimer composites using recyclate
- Techno-economic analysis and porotype development

Funding Mechanism

FY19 Bioenergy Technologies Office Multi-topic FOA – DE-FOA-0002029