

IGET: Informatics-based genetic tools for rapid enhancement of production strains

Blake Hovde

March 9th, 2021

Project Overview

- **Challenge**: Limited genetic tools are available for algal engineering applications.
- **Goal:** Rapidly generate a validated library of distinct promoter sequences to be used for generating specific gene expression levels.
- **Relevance**: Augmenting the *variety* of promoter sequences available to researchers, advancements in genetic engineering of algae will be obtained.

Currently, algal genetic engineering tools are limited across algal systems:

Applications: Enabling fine-tuning of target product and co-product pathways.

Project Overview

- Technical objectives:
 - Generate promoter libraries for industrially relevant algal strains *Nannochloropsis* salina, Scenedesmus UTEX393 and Microactinium sp. -
 - Utilization of transcriptomic data to identify promoter sequences analysis gene expression
 - Validation of promoter strength/inducibility in-vitro

1 – Management

- Blake Hovde (PI LANL) Bioinformatics gene expression analysis/promoter identification
- Jackie Mettler (Post Masters student LANL/UNM) Molecular Biology transgene cloning and qPCR analyses
- Raul Gonzales (Scientist II LANL) Molecular Biology cloning strategies and transgene design
- Sangeeta Negi (Scientist II LANL) Algal cultivation and genetic engineering support

Project Structure:

Risks and mitigation: The main risk of this project is the contradiction of predicted promoter constructs and validation of gene expression during validation.

Regular progress updates:

 -Weekly full team meetings for strategy/troubleshooting
 -Quarterly reporting on deliverable to BETO 3/9/21 4

Validates promoter strength/inducibility

Molecular Biology

- Utilization of transcriptomic analysis to identify genes that are differentially expressed in each algal species
- Identify a variety in a strength and inducible promoters to be validated using molecular biology techniques

Risks:

- Quantitation of gene expression is measurable/consistent?
- Promoter sequences identified provide a reliable level of gene expression in practice?

2 – Approach

Gene expression analysis (transcriptomics) to inform promoter selection

Transcriptomics

Informs promoter selection

General Concept:

- Select promoters with low variability over the experimental time-course
- Select a variety of promoters based on overall predicted strength

Gene expression data collected over 24 hours

(light and dark periods)

2 – Approach

Utilization of transcript data to identify promoters for the promoter library

			tated	Sce	nede	smu	s ger	ome		11.000				Fin	d ger	ne in tr	ne ann	otateo	d geno	ome
Ļ		Annot	tated	Sce	nede	smu	s ger	ome						Fin	d ger	ne in th	ne ann	otateo	1 geno	ome
Expre																				
Ever	ession	data	for ~	1200	0 ge	nes									hou	irs				
T	gene_5282 gene_8531	744 7487 14458	8314 3396	8559 6547	7437 7401 8668	7691 12609	8138 9174 5383	12553 12483 4031	11983 10320 10495						cor	nsister	t expr	essior) over	48
	gene 7822 gene 1488	11617 8305	5951 8163	9420 8733	11219 7559	13541 8101	4558 8576	5335 12201	9913 11260						Ide	ntifica	tion as	anes w	vith	
	gene_8428 gene_792	8961 8836	8574 7984	11613 8762	12226	12197 8069	5877	8084	10228						2.1	20	Но	urs	12	
	gene_16837 gene_7613	8647 8902 7243	9309 8449 12183	10228 8968 23639	8565 7731 6155	6578 8497 6336	8473 8980 2097	13201 12759 10921	14928 12130 14768			0		14	24	28	32	38	42	45
	gene_10269 gene_10135	8201 12436	8407 7162	9305 10986	8589 12185	9475 11489	9906 4444	11700 7703	9569 15199	-										
	gene_9668 gene_14792	9712 9401	8143 9576	8912 13623	7992 15796	8877 10350	8602 6471	12660 10001	15423 7722		R	2000						_		
	gene_14125 gene_2287	12378 7889	6457 9558	11977 9941	15697 8423	13989 9711	3127 9006	5545 14078	14032 11890	_	bea	4000				_	_			_
	gene_13539 gene_10365	8872 8828	9299 9716	10066	8422 9795	9116 9357	9810 8784	15232	13202 11377		Cou	0000								
	gene_900 gene_145	10842 11370	9272 9544	10520 11333	8563 8894	8919 10573	9209 10540	14770 12425	18665 14082		ť	6000								
	gene_8286 gene_11425	14168 10052	9501 10941	13382 10906	11760 9575	9592 10303	8575 11004	13662 16425	21653 12556		Exp	8000	-		_	_	_			_
	gene 954 gene 5455	10580	15259	1/542 18179	22419	10700	5264	10100	10458		res									
	gene_8183	11625	8490	10199	9658	12055	10230	12911	15073		sior	10000								
	gene_9700 gene_6828	11081 9579	10614	11909	10523	9887 10312	11665	17521	17833		ĉ	12000								
	gene_12177	8926	11678	14098	12057	10511	10783	17014	13176			1 20 00								
	gene_5230	12220	11359	12429	10419	11097	11292	17284	14606			14000								
	gene_9498	10145	12962	13614	11923	9927	11336	18835	15808											
	gene_1996	9369	24247	26807	15070	7374	7604	23866	10779						gene	10269 (6	0s Ribos	somalpr	otein)	
	gene_8128	10085	14379	14091	12002	9901	13129	20435	14741											
	gene 1581	10758	14298	14536	12861	12403	13547	21176	13865											
	gene_2709			12103	10787	14853	12790	17286	15680											

Capture upstream promoter sequence for cloning

48

62

mm

2 – Approach Cloning of candidate promoters into algal strains

- Originally, we planned to use random integration of transgene constructs
- Transgene Cassettes contain a swappable promoter domain for rapid cloning of new promoter sequences

mcherry

8

Molecular Biology

2 – Approach Validation of promoter sequences using qPCR

To validate promoter strength:

- Quantitative PCR (qPCR) will be used to enumerate a more precise transcript number as a measure of promoter strength.

- qPCR has a much higher dynamic range than fluorescent signal

3 – Impact

- Goal: improve genetic engineering tools for algae by developing variable strength promoter libraries in a stable Cas9 algal cell line.
- If successful in completing these objectives:
 - Release of promoter library sequences in three industrially relevant algae.
 - Follow on work would include publication of a publicly available tool "ExpressTrain" that would allow any user to rapidly identify candidate promoter libraries for any organism with transcriptomic (RNAseq) data available including any strain passed through the BETO Blueprint project.
 - Each algal species is unique and requires a promoter library this process democratizes this process.
- Industry impact
 - The promoter library is immediately useful to the academic and industrial algal research community utilizing *Nannochloropsis, Scenedesmus* and *Microactinium* species.

3 – Impact Why Native promoters?

- Native promoter libraries are a complementary approach to the development of synthetic promoter libraries, but include a number of advantages
 - Rapid mobilization
 - Reduction of the potential for gene silencing
 - Condition specific expression

4 – Progress and Outcomes Example – Nannochloropsis promoters

Very poor correlation between predicted and measured expression of clones

4 – Progress and Outcomes Example – Nannochloropsis promoters

High variability of expression between individual clones of the same promoter sequence likely due to random integration

4 – Progress and Outcomes

Promoter libraries have been developed for *Nannochloropsis* and *Scenedesmus*

However, variable expression levels of these libraries – likely due to random integration effects - have made these libraries ineffective to date.

To remedy this:

We have been developing Cas9 (CRISPR) safe harbor cloning methods to consistently insert the test expression constructs into the same genomic location to improve replication and accurate promoter strength measurement

Summary

Overview: This project will provide researchers verified genetic tools for algal engineering and will enhance the genetic engineering toolbox greatly. **Approach**:

Accomplishments:

- Development of use of two stable Cas9 expressing algal cell lines
- Determination of promoter variance based on consistent integration of promoter sequences

Relevance:

- Rapid development of promoter libraries
- Generation of stable Cas9 cell lines utilizing the developed promoter libraries
- Stable Cas9 cell lines lead to rapid genome engineering applications

Timeline

- Start date: 10/1/18
- End date: 9/30/21

	FY20	Active Project		
DOE Funding	(10/01/2019 – 9/30/2020) \$200,000	\$600,000	End c Publicat three or biotech Nannoch UTEX39	
Projec • No				
Barrie 19Ft-C F Improve Developr engineer	Fundi _{N/A}			

Project Goal:

To develop a standard method to rapidly generate a validated library of distinct promoter sequences to be used for generating specific gene expression levels.

End of Project Milestone:

Publication of a library of promoter sequences for three organisms as a public resource for the algal biotech community. Organisms include *Nannochloropsis salina, Scenedesmus obliquus* UTEX393, and *Microactinium* sp.

Funding Mechanism

Additional Slides

Scenedesmus stable Cas9 vector

Series1 Series2

Rationale: Limited genetic tools are available for algal engineering.

Approach:

qPCR and fluorescent detection of actual promoter strength

<u>Outcomes</u>: a library of ten native promoters representing a variety of gene expression strengths and three additional inducible promoters.

3-year AOP concept proposed from successful completion of seed: "<u>IGET: Informatics-based genetic tools for rapid</u> <u>enhancement of production strains</u>" – Application of these tools to three BETO algal production strains

PCAMBIA1302 as the backbone vector for promoter testing in *Scenedesmus*

 The pCAMBIA1302 plasmid has been used for Scenedesmus obliquus transformation by electroporation

Some Scenedesmus cells transformed with pCAMBIA1302 show increased fluorescence on GFP channel on flow cytometer

Strategy:

- Optimization of transformation conditions by flow cytometry/cell sorting.
- Preliminary testing of promoter strength by flow, with further confirmation by RT-PCR.

Current Status: Stable Nannochloropsis Cas9 lines

- Established stable Cas9 expressing strains:
 - N. salina (LANL)

- N. gaditana (Posewitz)

Shounak Banerjee, Scott Twary

3/9/21

Generation of CRISPR stable editing line 1)CRISPR expression

Randomly integrated Cas9

Responses to Previous Reviewers' Comments

- If your project has been peer reviewed previously, address 1-3 significant questions/criticisms from the previous reviewers' comments which you have since addressed
- Also provide highlights from any Go/No-Go Reviews

Note: This slide is for the use of the Peer Reviewers only – it is not to be presented as part of your oral presentation. These Additional Slides will be included in the copy of your presentation that will be made available to the Reviewers.

Publications, Patents, Presentations, Awards, and Commercialization

- List any publications, patents, awards, and presentations that have resulted from work on this project
- Use at least 12 point font
- Describe the status of any technology transfer or commercialization efforts

Note: This slide is for the use of the Peer Reviewers only – it is not to be presented as part of your oral presentation. These Additional Slides will be included in the copy of your presentation that will be made available to the Reviewers.