

DOE Bioenergy Technologies Office (BETO) 2021 Project Peer Review

Hybrid electro- and thermo-catalytic upgrading of CO_2 to fuels and C_{2+} chemicals

March 11, 2021

CO₂ Utilization

Zhenglong Li

Oak Ridge National Laboratory

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Goal Statement

- Goal: develop an electrocatalytic synthesis approach for the reduction of CO₂ to C₂₊ products to achieve the target of >58% faradaic efficiency for C2+ products at -1.1V vs RHE (25% increase compared to Cu/carbon nanospike -- 46% at -1.1V vs RHE)
- Outcome: advance the state of technology for electrochemical synthesis of C_{2+} molecules from CO_2 over new carbon nanospike-based electrocatalysts
- Relevance: this project is relevant to the bioenergy industry because it
 provides a means to recycle CO₂ from the biorefinery to molecules that
 were traditionally fossil-based, in a manner that is synergistic with biofuels
 and renewable electricity generation

Project Overview

Importance of CO₂ utilization:

- Mitigate the CO₂ emission challenges
- CO₂ as a carbon-based feedstock for producing chemicals and fuels
- CO₂ reduction as a useful means to store renewable electricity in chemical energy

Hybrid electro- and thermo-catalytic CO₂ utilization approach for making hydrocarbon fuels and valuable chemicals

This SEED project seeks to electrocatalytically synthesize C_{2+} products that can be tailored for further thermal catalytic upgrading to transportation fuels, chemicals and polymers.

Quad Chart Overview

Timeline

- 10/1/2018
- 09/30/2020

	FY19	FY20	Total Planned Funding
DOE Funding	\$200,000	\$200,000	\$400,000

Barriers addressed

Efficient catalytic upgrading of gaseous intermediates

Project Goal

To design electrochemical catalysts for the conversion of CO_2 to C_{2+} oxygenates for further thermocatalytic upgrading to desired products.

End of Project Milestone

Develop a CO_2 electrocatalytic reduction pathway based on bimetallic M-Cu/CNS electrocatalysts with the target of achieving >58% Faradaic efficiency for C_{2+} products at -1.1V vs RHE (25% increase compared to current Cu/CNS - 46% at -1.1V vs RHE).

Project Overview

This project builds on a technology for selective conversion of CO_2 to ethanol over carbon nanospikes (CNS).

2019 R&D100 Award

SCIENCE ADVANCES | RESEARCH ARTICLE

ELECTROCHEMISTRY

A physical catalyst for the electrolysis of nitrogen to ammonia

Yang Song,¹ Daniel Johnson,¹ Rui Peng,¹ Dale K. Hensley,¹ Peter V. Bonnesen,¹ Liangbo Liang,¹ Jingsong Huang,^{1,2} Fengchang Yang,³ Fei Zhang,³ Rui Qiao,³ Arthur P. Baddorf,¹ Timothy J. Tschaplinski,⁴ Nancy L. Engle,⁴ Marta C. Hatzell,⁵ Zili Wu,^{1,6} David A. Cullen,⁷ Harry M. Meyer III,⁷ Bobby G. Sumpter,^{1,2} Adam J. Rondinone¹*

CARBON DIOXIDE REDUCTION

Geometry aids green carbon electrochemistry

Nanoscale texture of electrocatalysts, enabled by the tools of nanoscience, is emerging as an important lever for the control of electrochemical reaction pathways.

Adam J. Rondinone and Jingsong Huang

Nature Catalysis

news & views

Project Overview

Cu on carbon nanospikes can catalyze cascade reaction of CO₂

conversion to ethanol

1 – Technical Approach

Original Product Mix over Cu/CNS

Cu/CNS serves as the baseline for further development

Cu/CNS
performance @-1.1V
vs RHE is the
benchmark

1 – Technical Approach

Oligomerization is controlled by metal co-catalyst

Develop bimetallic co-catalyst to enhance the oligomerization rate by tuning CO binding energy

ChemSusChem **2018**, 11, 48 – 57

2 – Management Approach

Small seed-level project with 4 team members:

- Zhenglong Li: PI, catalyst design
- Adam Rondinone: (prior PI*), nanomaterials science and electrochemistry
- Dale Hensley: synthesize carbon nanospike material
- Seonah Jin: electrochemistry, bimetallic catalyst synthesis

Monthly team meetings

Project structure:

- Task 1: Bimetallic electrocatalysts synthesis and characterizations
- Task 2: Electrocatalytic testing and electrocatalyst optimization
- Interaction with ChemCatBio (CO₂ upgrading)

2 – Management Approach: Risk and Mitigation

Risks	Mitigation	
Bimetallic electrocatalysts could not promote the formation of C ₂₊ products to reach the targeted faradaic efficiency	Advanced catalyst characterizations and electrocatalyst testing will provide useful information about the catalyst structure and performance. Alternative bimetallic co-catalysts will be studied based on evidence of this information.	
Cu and the 2 nd metal do not form alloys but distribute separately on the CNS using electrochemical deposition synthesis method.	Wet chemical synthesis method will be employed to prepare the bimetallic nanoparticles first, and then load onto CNS.	
Some of the advanced characterizations, such as XAS, may not be available at the time needed.	Make plans earlier and schedule the beam time beforehand via better coordination with Advanced Catalyst Synthesis and Characterizations within ChemCatBio Consortium.	

Milestones Associated with Risk Mitigations

- **FY19 Q2:** Develop at least 3 carbon nanospike supported bimetallic electrocatalysts with different formulations for electrocatalytic testing
- **FY20 Q4 (delayed):** Develop a CO₂ electrocatalytic reduction pathway at lab scale based on bimetallic M-Cu/CNS electrocatalysts with the target of achieving >58% faradaic efficiency for C₂₊ products at -1.1V vs RHE (25% increase compared to current Cu/CNS 46% at -1.1V vs RHE)

3 – Impact: Relevance to Bioenergy Industry

Develop electrochemical catalyst for recycling CO₂ from biorefinery into useful molecules

- Generate valuable products from fermentation derived CO₂
- Electrochemical systems are tolerant of intermittency and appropriate for renewable energy storage
- Make a green process greener

3 - Impact: Relevance to Bioenergy Industry

Transitioning R&D discovery of CO₂ utilization to bioenergy industry

ReactWell licensed ORNL technology on electrocatalytic CO₂ conversion to ethanol

March 1, 2019

OAK RIDGE, Tenn., March 1, 2019—ReactWell, LLC, has licensed a novel waste-to-fuel technology from the Department of Energy's Oak Ridge National Laboratory to improve energy conversion methods for cleaner, more efficient oil and gas, chemical and bioenergy production.

ReactWell will bring ORNL's electrochemical process, which converts carbon dioxide directly into ethanol, into the company's existing conversion solution known as the ReactWell process.

Additional research license was added to expand further collaboration with industry

Two major objectives of this project:

- Understand CO₂ activation over CNS electrocatalyst
- Demonstrate the proof-of-concept results for enhancing C₂₊ product formation from CO₂ with bimetallic cocatalyst to achieve the target of >58% faradaic efficiency for C₂₊ products at -1.1 V vs RHE (25% increase compared to benchmark)

Understand the role of bicarbonate in CO₂ activation over CNS

Literature study:

 CO₂ molecules are mediated to the Cu surface via their equilibrium with bicarbonate anions instead of direct adsorption from the solution*

This study suggests:

- CO₂ reduction with bicarbonate as electrolyte is less active than with perchlorate over CNS
- Dissolved CO₂ is more likely to react, consistent with hypothesis of CNS mediated e⁻ injection

^{*}J. Am. Chem. Soc. 2017, 139, 3774-3783

^{*}J. Am. Chem. Soc. 2017, 139, 15664-15667

4 – Progress and Outcomes: role of CNS in activating CO₂

Sharp tips of CNS lead to enhanced electric field, enables N₂ activation via direct e⁻ injection (BES efforts)

Faradaic efficiencies for NH₃ synthesis

 CO₂ polarization over CNS has higher dipole moment than N₂ Induced Dipole Stabilizes CO₂ in Stern Layer

- Enhanced CO₂ surface coverage facilitates direct activation of CO₂ over CNS via e⁻ injection.
- Neighbor C-C coupling sites are needed to further promote the formation of C_{2+} products.

Demonstrate electrochemical synthesis of bimetallic PdCu/CNS electrocatalysts

Challenge:

How to locate metal co-catalyst close to CNS

In situ electrochemical deposition synthesis:

- **Simple** synthesis methodology
- Direct formation of metal nanoparticles at catalytically relevant locations
- Avoid using surfactants in metal nanoparticle synthesis

Further advantage over CNS:

- CNS unique configuration facilitates the in situ nucleation of metal nanoparticles
- Form nanoparticles close to carbon nanospikes, CO generated from nanospikes can directly react over nanoparticle surface

In situ electrochemical synthesis of bimetallic PdCu nanoparticles over CNS

CO stripping experiments were leveraged to understand metal particle composition

CO-stripping results for PdCu₉/CNS

With reduction process before CO adsorption

Without reduction process before CO adsorption

Bimetallic PdCu/CNS can be electrochemically made either in separated phases or well mixed form

Synthesize bimetallic PdCu with varied surface composition to control CO binding energy

CO stripping experiment

- (Pd:Cu=initial conc. ratio in solution)
- Deposition condition: -0.8V 1 sec for Cu, -0.2V 0.5 sec for Pd-Cu alloy and Pd

Outcomes:

- · Indicate formation of Pd-rich bimetallic PdCu nanoparticles for PdCu₉, PdCu₆, PdCu
- The difference of surface Cu/Pd ratio can help to tailor the CO binding energy

Demonstrate the feasibility of producing C_{2+} products from CO_2 over bimetallic $PdCu_3/CNS$

Future work:

 Identify and quantify the products in the liquid phase (delayed due to the impact of COVID)

Qualitative mass spectrometry measurements indicate the presence of heavier products

Bimetallic PdCu₃/CNS shows relatively stable performance after initial induction period

Future work:

Improve the current density via designing gas diffusion electrode

Summary

This project builds on the success of the CO₂ to ethanol technology developed at ORNL

- CO₂ to ethanol technology was licensed to Reactwell
- Received 2019 R&D100 Award

Outcome

- Advance **electrocatalytic synthesis** approach for **reduction of CO₂ to C₂₊ oxygenates**, as feedstocks for thermocatalytic upgrading to hydrocarbon fuels

Approach

- Developing bimetallic co-electrocatalyst to tune the CO binding energy to enhance the C_{2+} product formation

Progress and Outcomes

- Carbon nanospike electrocatalyst can directly activate CO_2 to form CO, and metal cocatalyst is needed to further oligomerize CO
- Bimetallic PdCu/CNS can be electrochemically synthesized in situ
- Bimetallic PdCu/CNS electrocatalyst could synthesize C₂₊ product from CO₂
- Further product identification and quantification are needed

Acknowledgement

Dr. Adam Rondinone (currently at LANL)

Dr. Seonah Jin

Dr. Yang Song

Dr. Jingsong Huang

Dr. Zili Wu

Dale Hensley

Dr. Harry M. Meyer III

Dr. Andrew Lepore

Junyan Zhang

Dr. Michael Hu

Dr. Aimee Church

Dr. Art Baddorf

- Bioenergy Technologies Office:
 - ❖ Ian Rowe

Additional Slides

Publications, Patents, Presentations, Awards, and Commercialization

- Rondinone, Adam. "Carbon nanospikes as a physical catalyst for the electrolysis of carbon dioxide."
 ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY. Vol. 257. 1155 16TH ST, NW, WASHINGTON, DC
 20036 USA: AMER CHEMICAL SOC, 2019.
- "ALLOY BASED CATALYST FOR THE ELECTROCHEMICAL SYNTHESIS OF HYDROCARBONS FROM CARBON DIOXIDE" US Provisional Application Serial No. 63/085,340, filed on September 30, 2020. (This work has led to a research license.)