Leveraging the Advantages of Additive Manufacturing to Produce Advanced Composite Structures for Marine Energy Systems

Paul Murdy, PhD
Manufacturing and Characterization Group
04/09/2021
Flatirons Campus
Manufacturing and Validation

CoMET Multi-Scale Manufacturing

Subcomponents

Coupon Characterization

Full-Scale Validation
1 Marine Energy, Composites, and Additive Manufacturing
2 Project Goals
3 Integrating Additive Manufacturing
4 Case Study 1: Tidal Turbine Blade
5 Case Study 2: River Turbine T-Joint
6 Future Opportunities and Challenges
Marine Energy and Composites

- Marine energy industry is seeing rapid development
- Very broad variety of system designs
- Composite materials are an attractive choice for structural components
- Mold costs can be a significant barrier to implementation of composites, especially when prototyping
- Need cost-effective, low-volume manufacturing techniques
- Advances in additive manufacturing could fill the gap.
Additive Manufacturing (AM)

• Rapidly expanding industry
• Expensive, small-scale novelty items to viable, affordable manufacturing
• Being explored for large-scale structures
• Close to economic feasibility for mass-produced, end use parts

Current technologies:
• Fused deposition modeling (FDM)
• Stereolithography (SL)
• Powder-bed fusion
• Binder jet
• Selective laser sintering (SLS)
• Mainly external molds for small components
• Dissolvable internal molds
• Large-scale mold making for wind turbine blades
• Continuous filament printing
• Increased automation, reduced waste, quicker concept to on-site manufacturing
Seedling Project Goals

• Explore the current applications of AM in composites manufacturing
• Investigate potential for AM in marine energy industry
• Explore hybrid additive/composite manufacturing techniques and the potential of unique design features
• Produce a reduced-scale component utilizing the new, investigated techniques
• Evaluate benefits associated with the processes and areas for further development
Integrating with Marine Energy Systems

- Utilized examples from the Reference Model Project
- Identified components that may benefit from composite materials
- Down-selected composite components that could benefit from AM tooling
- Developed two case studies:
 1. Additive/composite manufactured hybrid tidal turbine blade
 2. Cross-flow river turbine strut T-joint soluble tool

Images courtesy of Sandia National Laboratories
Case Study 1

Additive/Composite Manufactured
Hybrid Tidal Turbine Blade
Objective

- Redesign a tidal turbine blade with AM internal mold
- Design with composite overlay to produce “hybrid” structure
- Explore unique design and manufacturing possibilities
- Manufacture reduced-scale blade section to highlight beneficial features

Reference Model 1
Image courtesy of Sandia National Laboratories
Mold Manufacturing

Traditional Mold Manufacturing

Plug Shaping → Plug Finish and Prep → 1st Side Layup → 1st Side Removal

→ 2nd Side Layup → 2nd Side Removal → Support Structure Construction → Finishing Process

Additive Mold Manufacturing

3D Printing Preprocessing → Printing → Post-Print Machining → Sealing and Finishing
Component Manufacturing

Traditional Composite Structure Manufacturing

Preprocessing
- Mold prep
- Material cutting
- Preform creation

Processing
- Structural component manufacturing
- Multiple skin layups
- Adhesive Bonding
- Demold

Postprocessing
- Trim
- Root, cut, drill, and insert bonding
- Surface grind and finish

Additive/Composite Hybrid Structure Manufacturing

Preprocessing
- Mold prep
- Material cutting

Processing
- Structural component manufacturing
- Mold assembly
- Layup of entire structure

Postprocessing
- Washout (optional)
- Root facing
- Surface grind and finish
Conceptual Design

- Not an optimized hydrodynamic or structural design – showcasing manufacturing possibilities
- Overall structure designed to be representative of a typical blade
- Internal mold – unique design opportunities
- Segmented mold construction – not limited by printer size
- Composite layup and mold surface designed concurrently
- Single piece composite construction – no adhesive bond lines
Conceptual Design (cont.)

- In-situ root fasteners – minimize secondary tooling operations
- Slide in shear web to be co-infused during main infusion
- Integrated resin infusion lines – control of resin flow during infusion
• ~12 in. chord length and ~36 in. span
• Stratasys Fortus 400MC printer
• ABS filament print material
Manufacturing – Mold Assembly

- Sealing – sand surface, coat with epoxy, sand surface
- Bond segments together with shear web, dowel pins, and nylon bushings
Manufacturing - Composite Layup

- Structural flow media
- Triaxial glass fabric
- 7x root plies -> fasteners -> 7 root plies
- 4x spar cap plies top and bottom
- 2x skin plies
Room temperature cure with 2 part epoxy resin system
Manufacturing - Finishing
Case Study 1 - Summary

• Successful manufacturing of reduced-scale model
• Demonstrated internal tooling approach
• Sealing 3D print was time consuming and resin was drawn into mold cavities – integrated infusion lines
• Embedded fasteners simplified manufacturing
• Single piece construction – potential for increased reliability
• Unknown composite/3D print interface strength
• Journal article published (https://www.osti.gov/pages/biblio/1768280)
Case Study 1 – Next Steps

- Structural optimization – composite/additive co-design
- Techno-economic analysis – materials and design tradeoffs
- Manufacturing volume
- Better sealing methods
- Composite/additive interface characterization
- Enhanced recyclability with thermoplastic resin systems
- Full-scale demonstration
Case Study 2

Cross-Flow River Turbine Strut T-Joint
Washout Tool
Reference Model 2

- Vertical axis river turbine
- Blade/strut T-joint design
- Not conducive to composite manufacturing
- Redesigned to suit a common composite manufacturing approach

River Current Turbine
Reference Model 2

Images courtesy of Sandia National Laboratories
T-Joint Design

- External T-joint
- Soluble tool design
- Fused deposition modeling or binder jet printing
- 4-axis filament winding of composite over printed tool
- Dissolve tool and potentially reuse print media
- Strut and blade slide inside T-joint for adhesive bonding
- AM approach can be significantly cheaper than subtractive manufacturing of soluble molds (journal article in progress)
Looking Ahead

Future Opportunities and Challenges
AM in the Future

- Technology continues to evolve – faster, bigger, better materials, and lower costs
- More applicable to end use products and large structures
- More versatility and possibility of site-specific devices
- Machines in the water faster
- Better understanding of environmental effects on print materials (corrosion and water absorption)
- Characterization of materials to better suit additive/composite hybrid approach
- Continue to explore a more versatile design space
Thank you for Listening

www.nrel.gov