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Dynamic Contingency Analysis Tool (DCAT)

* DCAT significantly improves how we
prepare and plan for extreme events

* More realistic modeling enables
effective decisions

* Faster computing technology
e Automatic simulations

 Prepare for extreme events

* Improved assessment of cascading
outage impacts

* Plan for the future

* Provide information to identify grid
enhancements
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DCAT for Extreme Wildfire Event Planning & Mitigation

Historical wildfire
events evaluation
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An illustration of WECC 2019 Wildfire Points [1]. Northwest  ELECTRICITY

[1] The 2020 State of Interconnection published by Western Electricity Coordinating Council (WECC). Available at: https://www.wecc.org/epubs/StateOfThelnterconnection/Pages/Western-Interconnection.aspx



Hazard Contingency Modeling in DCAT

Contingency 1 Contingency 2 Contingency 3 Contingency n
.' g
Hazard

Available Mitigation
Plan List

Contingency List

l
DCAT

Hybrid Steady-state and
Dynamic simulation
* Interconnection Grid Models
* Protection system modeling
* Corrective Actions

Processing of
simulation results

e Database GUI
e Visualization

U.S. DEPARTMENT OF

~  ENERGY

Pacific OFFICE OF

Norgreess ELECTRICITY



DCAT Analytics — Database and Visualization Modules
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DCAT Applied in Western Grid Reliability Analysis
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[2] X. Fan, et al., "Bulk Electric System Protection Model Demonstration with 2011 Southwest Blackout in DCAT," 2020 IEEE Power & Energy Society General Meeting (PESGM),
Montreal, QC, Canada, 2020, pp. 1-5. doi: 10.1109/PESGM41954.2020.9281441.



DCAT for Extreme Wildfire Event Planning & Mitigation

CASE STUDY

Domain use case
formulation
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Grid Modeling
. : Historical wildfire event evaluation - : Future scenario synthesis and emulation . : Wildfire mitigation verification

@ : Wildfire caused Rolling Blackout evaluation - : Protection response evaluation for High impedance fault
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DCAT & EGRASS Can Be Extended for Wildfires

DCAT Simulation + DCAT Analytics
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Status and Goals

* Goal

* To develop and provide a DCAT-based framework to evaluate and visualize the impact of

wildfires on electricity infrastructure to mitigate service disruption and improve

resiliency.

* Status
e DCAT is protected by a pending U.S. patent and copyright
* Licenses are available for research, trials, and commercialization

* Collaborators included ERCOT, Siemens, BPA, GE, and EPRI; additional users, utilities,
and vendors are welcome

e Contact PNNL Senior Commercialization Manager Peter Christensen at
peter.christensen@pnnl.gov for more information
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Contacts

Xiaoyuan Fan Jeff Dagle Jim L. Spracklen
Xiaoyuan.Fan@pnnl.gov Jeff.Dagle@pnnl.gov James.Spracklen@pnnl.gov
Nader Samaan Marcelo Elizondo
Nader.Samaan@pnnl.gov Marcelo.Elizondo@pnnl.gov
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Team Produced Relevant Publications

Technical publications:
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Vyakaranam B., P.V. Etingov, H. Wang, et al. 2020. "Database Management Module
Framework for Dynamic Contingency Analysis and Visualization." In IEEE Power &

Energy Society General Meeting (PESGM). doi:10.1109/PESGM41954.2020.9281566

Davis S.H., M.A. Elizondo, X. Fan, et al. 2020. "Data Requirements for Application of
Risk-Based Dynamic Contingency Analysis to Evaluate Hurricane Impact to Electrical
Infrastructure in Puerto Rico." In CIGRE-US 2020 Next Generation Network Paper
Competition.

Chen Y., K.R. Glaesemann, X. Li, et al. 2020. "A Generic Advanced Computing
Framework for Executing Windows-based Dynamic Contingency Analysis Tool in
Parallel on Cluster Machines." In IEEE Power & Energy Society General Meeting
(PESGM). doi:10.1109/PESGM41954.2020.9281477

G. Chin, B. McGatry, K. Pierce, et al. 2020, "A Dynamic Contingency Analysis
Visualization Tool," 2020 IEEE Power & Energy Society General Meeting (PESGM),
doi: 10.1109/PESGM41954.2020.9281993.

K. Sundar, M. Vallem, R. Bent, et al. 2019, "N-k Failure Analysis Algorithm for
Identification of Extreme Events for Cascading Outage Pre-screening process," 2019
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10.1109/PESGM40551.2019.8973425.
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10.1109/PESGM.2018.8586612.

Q. Huang, B. Vyakaranam, R. Diao, et al., "Modeling zone-3 protection with generic
relay models for dynamic contingency analysis," 2017 IEEE Power & Energy Society
General Meeting (PESGM), , doi: 10.1109/PESGM.2017.8274534.

N. Samaan, J.E. Dagle, Y.V. Makarov, et al., "Modeling of protection in dynamic
simulation using generic relay models and settings," 2016 IEEE Power and Energy
Society General Meeting (PESGM), doi: 10.1109/PESGM.2016.7741981.

Institutional Reports:
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Richland, WA: Pacific Northwest National Laboratory.
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Restoring fire-prone forests in a changing climate

» Efforts to improve forest health and reduce wildfire fuels are focused on
reducing canopy cover in over-stocked forests via mechanical thinning
and prescribed burning.

B More frequent, less intense wildfire

B Reduced risk to electric transmission/distribution infrastructure

B Reduced post-fire hydrologic impacts (flash floods, landslides, increased
erosion, sedimentation, etc.)

» There is potential to leverage these investments to achieve

B Concurrent hydrologic benefits
B Increased snowpack & summer streamflow
B Increased flow to the hydrosystem

B Economic and societal benefits through collection of residue for bioenergy

» We examine the interplay among forest restoration, wildfire/smoke
emissions, snowpack, streamflow, land sector C stocks, and biomass

for energy across treatment scenarios using a decision support \;g/ ENERGY
application designed for that purpose. Pacific OFFICE OF

Northwesl;. ELECTRICITY

NATIONAL LABORATOR



Metrics to quantify the tradeoff analysis

» Fire
B Burn intensity (flame length, crowning index)
B Total carbon release
B Smoke production (PM2.5 and PM10)

* Forest management is spatially
explicit in annual timesteps.

e Values for key metrics quantify the
reduction in wildfire risk and

» Biomass smoke emissions, available

biomass, impacts to streamflow,

B Merchantable : .
and associated economics.

B Non-merchantable (residue for energy)
* These spatially variable metrics

» Hydrology help quantify the synergies and
B Snowpack characteristics tradeoffs between objectives
B Streamflow (annual, monthly, late season) * Trade-offs are reflected in the DST
» Economics
B Collection costs
~7  ERERGY

B Haulin t
auling CosSts Pacific OFFICE OF
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Reduction in wildfire risk through forest restoration

» Flame length under all weather conditions, indicates the likelihood that direct fire
suppression is an option and whether crownfires will initiate

B Current evaluation is for restored locations. We can also model change in likelihood of
spread between treated and untreated locations, not shown here.

Mean Flame Length
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e Significant reduction in flame length on treated pixels Pacific  orriceor
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Forest canopy conditions impact the volume and timing

of snowmelt and streamflow

Single location at U. of Idaho Experimental Forest
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Peak snow water equivalent (SWE) in the canopy gap is twice that of the
adjacent forest, and snow cover remains ~three weeks longer
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The economics of forest biomass depends on markets,

processing, and transport costs

($/BDMT-1)
< 50
50-60
60-70
[ 70 - 80
Bl - 50

» The road network is a major driver of delivered cost of residue
Bl Distance and surface type
» With three potential locations

B Vast majority of residue could be obtained at the target cost \zf/ ENERGY
using only the Leavenworth location Pacific OFFICE OF

NcgrAthAvgegt ELECTRICITY



Examining the tradeoffs between wildfire, water,

bioenergy, and economic sustainability

Restoration (RA1)

Scenario
Hydrology Fire

Biomass Economics

» Upper Panel: Priority locations (warm colors) for forest treatments based on
land allocation, derived benefits to hydrology, wildfire risk and smoke
emissions reductions, available biomass, and economics 7 . cmmemnror

» Lower Panel: Priority locations for individual objectives used in tradeoff Pacific e
analysis Northwest ELECTRICITY




PNNL-USFS Forest Restoration Collaboration

e 2014-2015: Development of a Distributed Hydrology Model for use in a
Forest Restoration Decision Support Tool to Increase Snowpack in the Upper
Columbia, Washington State Department of Ecology

* 2017-2022: Resource Assessment of Sustainable Biomass through Forest
Restoration, US DOE Bioenergy Technologies Office

e 2020-2021: Refine and Pilot Test Upper Columbia Distributed Hydrology Soil
Vegetation Model and Snow2Flow Decision Support Tool, Washington State
Department of Ecology

e 2021: Improving the Timing and Volume of Hydrosystem Inflow through
Targeted Forest Management, US DOE Water Power Technologies Office

e 2021-2022; Expanding Forest Management and Promoting Ecosystem Health
Services through access to Environmental Markets, USFS Region 5 National |
Conservation Investments Fund
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Contacts

Mark Wigmosta Paul Hessburg
mark.wigmosta@ pnnl.gov Paul.Hessburg@usda.gov
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Multi-Sensor Data Fusion for Active
Wildfire Monitoring

Andre Coleman — Principal Investigator / Data Scientist
Neal Oman — Project Manager

Todd Hay — Chief Systems Architect

Jerry Tagestad — Remote Sensing Lead / Data Scientist
Jill Brandenberger — Project Advisor

April 29, 2021
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Rapid Response Analytics for Situational Awareness

» Driving Questions for Situational
Awareness Support
B What is the spatial extent of the hazard?
B Whatis the timing of the hazard?
B How many people are at risk?
B What infrastructure are impacted or

at risk?
Remote-Sensing Ph:j;c;éﬁised
» How Does PNNL Support Events (MsI/HSI/SAR) | interdependent . . ystams
] _ InfrastIF')ucture { Current/ Data-Driven Architecture &
(Pre', Pel'l-, POS'[-EVGH'[)’P {Asif;s:]:qt// Modeling Forecast / Modeling DSofltware t
. . . ] Hindcast evelopmen
B Predictive modeling and simulation UAS Flood States }
B Leverage existing simulations
Cross-Cutting Capabilities to Support Situational Awareness
(OpenWELL)
B Assess existing/forecasted risk to — — —
infrastructure % I
B Imagery-based damage analytics C ENERGY
Pacific OFFICE OF

Northwest ELECTRICITY
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Rapid Response Analytics for Situational Awareness

» 35-year trend analysis indicates positive trend in economic loss!?
B Hydrologic events - 300% increase
B Meteorological and climatological events - 200% increase
B Geophysical events - 50% increase

» The frequency, magnitude, and velocity of disaster events requires
adaptations in disaster management operations

B Current operational approaches are not necessarily equipped to handle the
Influx of diversely available information required for highly dynamic events

» The disaster management community requires accurate, timely, and \gg’/
e e d
comprehensive impact assessments frequently throughout the event N%?'tr'.ﬁvest
B <24-hr recurrence; >24-hrs, usefulness degrades?
ENERGY
OEFITICEE(?'FI'RICITY

1Hoeppe (2016) 2 Benfield (2018) 3 Hodgson, M.E. et al. (2014) UNCLASSIEIED



Rapid Analytics for Disaster Response (RADR)

Optical/SAR Flood Detection Active Wildfire Monitorin

Structural Damage
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2020 Wildfire Season in Review R/gﬂ FIRE Ji\i}:

ai.mil

Fires, thousands

» For 2020 in the U.S.
L 100 \‘ A . 10
B 10.3 million acres burned 0 -4 LA ¢
B 1.4x higher than the 2010-2020 10-yr average; 3x higher than the 1990- . )
2000 10-yr average 5 | "
B Long-term trends suggest flat trend on the number of fires o2 : 0
B Strong positive trend in the total acreage burned Grapf N.Fc,zcil i .
. CA 5 Of the top 20 |argeSt fll’eS .; Western U.S. Average Tempe;atu:e;Au?-:Z:—
B CO: 3 of the state’s largest fires
B ~18k structures lost
B $3.6B in fire suppression costs
B $16.6B in direct costs

B i.e., insurance claims plus estimates for uninsured
B Estimated $130-150B in indirect costs

B i.e., environmental cleanup, lost business, tax revenue, property and
infrastructure repairs

Dry

. 4th-Greatest Drought / F-6.00
1895-2020 Ti -
— Cozodecader on Record in 2020
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Technology Needs in Wildfire Response

» Use of high-resolution satellite imagery to help meet demand

B Imaging aircraft are in high-demand — generally prioritized for high complexity fires
» Persistent monitoring (10-15-minute intervals)

» Automated algorithms to process imagery and generate analytics

B Move away from human analyst image interpretation

B Produce standardized map products in common geospatial data formats/delivery protocols

» Imaging at 10m GSD (commonly used sensors at 375m and 1km GSD)
» Automated early fire detection

» Semi-continuous fire behavior forecasting with up-to-date high-fidelity inputs
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Remote Sensing of Wildfire

~ Sentinel-1 (SAR)
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Rapid Analytics for Disaster Response (RADR) - Wildfire

RADR xBR Algorithm using SWIR spectral bands (20m GSD)

» Automated, end-to-end, cloud-based, open-
data solution that retrieves and utilizes
specialized imagery from numerous high-
resolution (<30 m) earth observation
satellites

» Provide situational awareness on the active
fire front, spot fires, scattered heat, post-
burn intensity, and unburned areas

» Time-series results disseminated via
website, mobile app, and web services

BN CLASSIFIED
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Rapid Analytics for Disaster Response (RADR) - Wildfire

» Risk analytics for critical energy infrastructure
» Where the fire is, how intensely it has burned, where it is going?
» Critical for post-fire assessments / post-fire flood and debris flow risk
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Wildfire Behavior Modeling

Satellite
Observation

Day 1 —
Hour 10

Time

Veg type
Veg height
Veg density

Veg structure

Veg stress
WUI Fuels
Soil moisture
Terrain
Meteorology

Model
Day 1-
Hour 11>

Model
Day 1-
Hour 12 -

Model
Day 1-
Hour 13 =

— b

Model Satellite

Day 1- Observation
Hour x = Day 2 —
Hour 10

-Satellite observations provide
current system state (daily)

-Fire behavior models provide
forecasted conditions in
between observations (hourly)
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RADR-Fire Team

Andre Coleman — Principal Investigator (Andre.Coleman@pnnl.gov )

Neal Oman — Project Manager (Neal.Oman@pnnl.gov)
Todd Hay — Chief Systems Architect (Todd.Hay@pnnl.gov)
Jerry Tagestad — Remote Sensing Lead (Jerry.Tagestad @pnnl.gov)

vVvVvVvyyvyy

Jill Brandenberger — Project Advisor (Jill.Brandenberger@pnnl.gov)

Russ Burtner — Ul/UX Design Daniel Farber — Fire Behavior Modeling
Daniel Corbiani — Cloud System Architect Marena Richardson — Software Engineer
Kyle Larson — Remote Sensing Developer Danielle Rubin - Software Engineer

Lee Miller — Geospatial Developer Tim Seiple — Geospatial Cloud Developer

Corey Oldenberg — Cloud Developer Yi Shaw — UI/UX Design

Bill Perkins — Fire Behavior Modeling %/
ENERGY
ELECTRICITY
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Overarching goals

1. Map wildfire risk with variable temporal scales
* e.g., day, week, month, seasonal scales

2. Evaluate effects of potential management on reducing wildfire risk
* e.g., prescribed fire, forest thinning, reduce litter/CWD fuel availability
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Objectives

 Test hybrid modeling framework with mechanistic/Al (XAl) fire models for risk
assessment

« Model wildfire risk probability, dynamically across space and time
* Model multiple management practices and their potential impacts

« Continuously improve the risk model with transfer learning and using
observational data
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Technical Approach
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Figure 1. Basic flow diagram of the US National Fire Danger Rating System.
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Technical Approach

Fine-tuned machine L
) Fire risks
learning parameters

output output il

R ITI I IEITTSENTITINrarN=N y

- Satellite data finetuned surrogate | , CALAND

] . . &——— Fine-tune Carbon input file _ Scenario input file

+ fire model (transfer learning) - r Initialcarbon density S

: ! Net vegetation carbon flux Initialize model for Annual area changes
Ste p 3 Net soil carbon flux T annual loop “ Annual managed areas

, Annual wildfire areas

Management and wildfire

carbon flux parameters Annual mortality rates

Annual vegetation and soil
carbon flux climate scalars
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A Mortality < Management —>  Wildfire
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/ Simulated risk / Simmonds et al., 2021
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Applications over CA

Our XAl model Random forest model (Jing Li 2020)

‘ . L
0.3 04 05 0.6 0.7 0.8

2012-2016: 368 large fires (Burned area > 4 Km?), 216 small fires

Precision

—— Our model

0.86 - —— Random Forest
0.84 - W
0.82 1
0.80 -

1 3 4 5 6 71 8

Months in advance
Jing Li 2020

F1-score

0.84 1

0.82 1

0.80 1

0.78 1

0.76 1

0.74 -

—— Our model
—— Random Forest

1 2 3 4 5 6 71 8

Months in advance
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Capability Summary

In 3 month [ WiIo!fire Early } In 6 month Wildfire
warning system mitigation tool

Fire risk map with multiple time leads Fire risk map with/without management

[ Fire risk map with daily leading time Daily-weekly leading time: e.g.,
‘ monitoring, resource allocation,
[ Fire risk map with weekly leading time | + powerline shutdown

[ Fire risk map with monthly leading time

Monthly-seasonal leading time: e.g.,
prescribed fire, forest thinning

[ Fire risk map with seasonal leading time
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ML Fire Behavior Model: Interactively Calibrated with Satellite Data

Our Strateqy

What are the critical mechanisms driving the predictability of fire behavior?
Biogeophysical Variables

Vegetation type, structure, conditions _Machine Learning (ML)

Soil type b
Soil moisture Wildfire

: . Behavior
Topographic characteristics (slope, Predictions

aspect elevation)
Weather/Climate

input layer hidden layer output layer

Wildfire history (spread, burn rate and
intensity, etc.)

How does vegetation regrow after fires?
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Forest Recovery/Regrowth

.
—eo— Blue (0.45-0.52)
-o— Green (0.52-0.60)
—&— Red (0.63-0.69)
e NIR (0.76-0.90)
+ e  SWIR1 (1.55-1.75) *

—e— SWIR2 (2.08-2.35)

Jun-90 Aug-90 Aug-91 Aug-95 Aug-00 Aug-05 Aug-10

Source: R. Negron-Juarez (unpublished)

Validate/improve models
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FATES simulates and predicts growth, death, and regeneration of plants

Windthrows Clear-cutting Burning

% % Wi

FATES (The Functionally Assembled Terrestrial Ecosystem Simulator) reproduced the trajectory and
recovery time for windthrows and clear-cutting events

Negron-Juarez et al. 2020, Biogeosciences /*\l ﬂ ENERGY

) NGEE-TROPICS https://doi.org/10.5194/bg-17-6185-2020 |l —
NEXT-GENERATION ECOSYSTEM EXPERIMENTS BERKELEY LAB ELECTRICITY



Summary

e \We can implement a Machine Learning model for accurate short-term prediction of wildfire

behavior and effects

e \We have created a framework that integrates remote sensing, field data and modeling for regrowth

following fires

e \We can produce reliable short/long term predictions of fire behavior and effects
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.05 Anaceles Times
n CALIFORNIA

u El Dorado fire sparked by pyrotechnic device used during
gender-reveal party at Yucaipa park

Sep 7, 2020
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Climate modeling for California planning
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HISTORIC HEAT IN DEATH VALLEY

FURNACE CREEK VISITOR CENTER, DEATH VALLEY, CA

AUGUST 16, 2020
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Total acres burned by fires in California

This year has already broken the state’s record, with more than 3.1 millign
acres burned.

3 million
acres

2 million

1 million

0 |
1950 2020

Data as of Sept. 10
Source: CalFire LAUREN TIERNEY/THE WASHINGTON POST
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Current rate of fires
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The balance of evidence = global warming increases US

lightning

We find variables that
correlate with
lightning today...
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The balance of evidence = global warming increases US lightning

We find variables that
correlate with

- AN
lightning today... 100% 7 - A
Change in
lightning
...and plug those into . by 2100
global climate models. 50% -
They predict a “50%
increase by 2100. 0% -

CAPE xP PWA10  IFluxT 1x G
Four different “variables”

Romps (2019)



We can speculate that
more lightning
- more wildfire

The big story is the

direct effect of warming
But a 50% increase in on the flammability
lightning by 2100 is
NOt the big story
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Q Changes to ecosystems
Abatzoglou and
Williams (2016)

An extra 100% already ® Changes
to rain

with from direct effect of d 4 9

warming

: : d
warming on vegetation d g

An extra ~50%

=+ 5 Changes by 2100 from
without ~ O to wind increased

warming lightning ?

Acres burned

1985 2000 2015 2100
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Overarching goals

« Burned areas predictions with high
accuracy and flexible lead time:
« Up to 8-months ahead of fire season

* Interpretable

« Example strategy described here covers
14 GFED global wildfire regions, including
the U.S.

 Currently at 0.5 resolution

« Southern Hemisphere South America,
Northern Hemisphere Africa, Southern
Hemisphere Africa

« Approach is only limited by resolution of
Input information

HS

14

BONA Boreal North America
TENA Temperate North America
CEAM Central America

~

NHAF Northern Hemisphere Africa
SHAF Southern Hemisphere Africa
BOAS Boreal Asia

NHSA Northern Hemisphere South Americe CEAS Central Asia
SHSA Southern Hemisphere South Americc  SEAS Southeast Asia

EURO Europe
MIDE Middle East

EQAS Equatorial Asia
AUST Australia and New Zealand
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Objectives

« Explore multiple Machine Learning (ML) methods for wildfire prediction

« Enhance interpretability of ML model with attention mechanism

« Diagnosis of mechanistic relationships underlying wildfire prediction

* Integrate impacts of historical local condition memory on wildfire burned area

* Integrate impacts of oceanic forcing (e.g., NINO, AMO, TNA, TSA indices) on wildfire burned area

NHAJ SHAI SHSA
40 40
BN Burned area percentage
Precipitation percentage
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Wild Weather
EI Nifio has caused unseasonable weather across the globe, reshaping commodities markets.
) Reduced monsoon rains in India
mean rice and sugar crops are
Wet Dry expected to fall this year. Rains inthe US.
have improved
wheat yields.

Severe drought curbs rice

production in two of the world's
biggest exporters of the grain, y
Thailand and Vietnam,
¥ %
|

7 >

(5 Parts of Africa are

Floods in Argentina
facing their worst and dry weather in 0
drought in decades, Brazil have reduced
hitting coffee the soybean crop.
production.

THE WALL STREET JOURNAL.

Sources; National Oceanic and i fon; ¢t analysts



Technical Approach
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Applications

a) NHAF BA observation b) NHAF BA Prediction g) NHAF mean absolute error

0.09 a) Top five most important variables
0.08
= 1.0 .
g 007 W pe B NHAF
2 0.06 =]
£ 005 5 08 @ SHAF -
000 033 067 100 = 0.04 = 1 SHSA
¢) SHAF BA observation d) SHAF BA Prediction 0.03{ _B__H_E___B__ga_—a. 2. 0.6
T 4 T 0.02 | p—ep—a—-a—o—>a — E 04
1 2 3 4 5 6 7 8 g '
h) SHAF mean absolute error % 0.2 i 1 1 N I —
0.12 =)
0
0.10 o 00
- ’ VPD SOILM RAIN SW Road RAIN VPD WIND PA Road RAIN SW WIND VPD Grass
S 0.08
8 006 d) SHAF-RAIN-time step importance e) SHAF-VPD-time step importance
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L Long dependency of burned area on
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Longer-Term Prediction

a) NHAF large fires

Integraling osan oo N
Indices improves 6-8 £ 002
month lead time 3 0024
predictions 502
0.020

1 2 3 4 5 6 7 8

d) NHAF small fires

0.026; ~H#— No ocean index
| —H+  With ocean index

MAE (Mha)
o o o
] o o
M I~ M
o ~J P
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Capability Summary

* High accuracy prediction across space and time
»Short lead time (1-4 month) prediction use local conditions

»Longer lead time (5-8 month) prediction rely on oceanic
precursors

* Interpretable ML model reveals process interactions
»Non-linearity of environmental controls
» Spatial heterogeneity of dominating controller

» Readily applicable for U.S. or CA-specific wildfire prediction
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Wildfire has cause significant damages in past decades

« Largest wildfire season in CA 2020: 9,639 fires had burned 4,397,809 acres !

* PG&E file of bankruptcy due to Campfire 2018: powerline ignition caused wildfire killed 84 people and 9.3 billion in
housing damage @

» To prevent wildfire event, PSPS(public safety power shutoff) in 2019 turned off millions of customer accounts, causing
huge economic and society impacts !

SAFETY

POWER SHUTOFF

U.S. DEPARTMENT OF

Campfire 2018 ENERGY

[1] 2020 National Large Incident Year-to-Date Report (PDF). Geographic Area Coordination Center(Report). National Interagency Fire Center. December 21, 2020. Archived from the original (PDF) on December 29, 2020. OFFICE OF
Retrieved January 13, 2021. ELECTRICITY

[2] https://www.nytimes.com/2020/06/16/business/energy-environment/pge-camp-fire-california-wildfires.html
[3] P. Gas and E. Company, “Pacific gas and electric companyamended 2019 wildfire safety plan,” tech. rep., 2019.



Data-driven Wildfire Risk Model

« Goal: Predict power-grid-induced wildfire probability and future fire exposure risks in transmission
and distribution systems to inform better de-energization strategies. The data-driven methods will
map the wildfire ignition risks to powerlines.

« Methodology: Machine learning techniques that leverage enormous data sets on weather and
infrastructure.

Grid Infrastructure data
e Conductor
Age/Material/Size
* Line length
* Transformer age
* Voltage level, etc.

Weather and vegetation data

* Air temperature
* Dead fuel moisture

* Evapotranspiration
» Mean daily wind speed M.L. Models

+  Maximum daily wind speed (Logistic regression, etc. )

*  Maximum daily gust wind Speed

* Precipitation

e Tree height etc. U.S. DEPARTMENT OF

Data-driven risk models ENERGY

OFFICE OF

BERKELEY LAB ELECTRICITY



Transmission System Risk Model

 Logistic regression model to predict the wire-down events in the transmission system

« Training data: year 2015-2018 weather, vegetation, and infrastructure data with total 83,180 non-
wire-down records and 71 wire-down records.

« Test data: year 2019 with 21,348 non-wire-down records and 34 wire-down records

Blue curves: historical wire-down events

Predicted Values

Positive (1)

Negative (1)

Actual Values
Positive (1) Negative (1)

16749 II

16000

14000

12000

10000

8000

6000

4000

2000

Confusion matrix (threshold = 0.5)

| pefinition | Score_

Recall TP 0.76
TP+FN
True negative rate TN 0.78
TN+FP
ENERGY
OEFEEE(?'FI'RICITY



Wildfire Exposure Risk Model

» Applied UC Merced model to project wildfire exposure risk of transmission lines based on historical records

» Accounted for multiple wildfire ignition sources:

« Environmental ignitions (natural causes: lightning, etc.; human causes, e.g. campfire, etc.)

* Powerline ignition risk

Camp Fire Active Perimeter, Wildland Urban Interface (WUI) & Major Transmission Paths
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Intermix WUI are areas where housing and vegetation intermingle.
Interface WUI are areas with housing in the vicinity of contiguous wildland vegetation.

EnvisionGeo.com
WUI CLASS 2010 [ High_Dens_Intermix Low_Dens_NoVeg /-/ Transmission Line N
High_Dens_Interface Med_Dens_Intermix Med_Dens_NoVeg Major Path 0 5 Miles
Med_Dens_Interface Low_Dens_Intermix WUI Data Source: Sources: CEC & Dale et al. L A

Low_Dens_Interface Ml High_Dens_Noveg  Silvis Lab

2000-2009

https://www.energy.ca.gov/sites/default/fil
es/2019-12/Forests_ CCCA4-CEC-2018-

002_ada.pdf

2040-2049 CANESM2
- RCP 8.5

? Decadal Fire Probability
: ~ Major Transmission Path
; - Alternate Path
Geothdr B o-oo0s

3 ? [ 00s5-0.1
East By 4 H []o1-02

g : [ o2-03
B os-os4
B os-os
B os-os

*Probability that there will be
one or more fires in that cell
during the decade
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Data-driven decision-making framework

e Goals:

« Develop data-driven optimal decision-making (de-energization and power shut-off) strategies given the
wildfire risks as inputs and evaluate the reliability and economics implications of various fire-related
planning and operation policies

I/ Data-Driven De-energization Strategy R
| (o -
Ignition risk
| Power System I
: model l
Input i A § ; Output
| > I
Weather, \ | : T
temperature, A | I Shit o
vegetation,
wignd, etc. : Fire Transmission Distribution / : plan
| spreading |
! model —— !
I ﬁ |
: ‘w N-k contingency Cascade failure :
analysis analysis U.S. DEPARTMENT OF
'\ _ S ENERGY
P - - - - OFFICE OF

ELECTRICITY



Optimal Decision Making Preliminary Results

« Assume the powerline with high wildfire risk shut-downs, perform the proposed strategy

Optimal load shedding Line overload at cascade stage 1
without optimal load shedding

80 80
02
® o0 020 80 60
=3
0.0
/ 001
o.o%’z - 40 N
@
L 20 - 20

Initial line outage Initial line outage

Line overload

0 0
branch load/branch capacities (%) branch load/branch capacities (%)




Optimal Decision Making Preliminary Results

« Assume the powerline with high wildfire risk shuts down, perform the proposed strategy

Cascading failure without

Optimal load shedding optimal load shedding

0.12

05_2 Initial line outage
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Data-driven Optimal Decision Making Framework

* To reduce calculation complexity, a data-driven model is developed based on the OPF problem
« Map the OPF problem to a multi-label classification problem

(

/

Generator status
(Fy)
Load profile (P,

Qa)

Powerline ignition
risk topology (N)

Data-driven problem modeling

Support vector
machine (SVM)

Logistic regression
Yy

Neural network

Generator scale up
(0/1)

Generator scale
down (0/1)

Load shedding (0/1)

Cascade failure (0,1)

N\

-

OPF results

0.0

— (]

Region 3 RS

ELECTRICITY



Transmission Network Datasets

ACTIVSg10k: 10000-bus synthetic grid on
footprint of western United State

Nominal Voltage

[ 765 kv
e 500 kv
I 345 kV
I 230 kV
I < 200 kV

IT OF

GY

Map of the Reliability Test System-Grid Modernization Lab Consortium (RTS-
GMLC) system overlaid on the southern California, Nevada, and Arizona

region. Blue and yellow dots represent wind and solar resources, respectively. hitps:ffelectricgrids.engr.tamu.edu/electric-grid-test-cases/activsg10k/ ELECTRICITY
https://github.com/GridMod/RTS-GMLC
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Preliminary Results

« Accuracy of 50% — 70% classification (line overload) prediction is achieved using support vector
machine and multi-layer NN
« Multi-label optimal decision classification with SVM

Confusion Matrix for the class - R1 gen scaling Confusion Matrix for the class - R1 load scale down

Accuracy Score Comparision
0.7

' !
Predicted label Predicted label O . 5
Confusion Matrix for the class - R2 gen scaling Confusion Matrix for the class - R2 load scale down
] &
: 0.3
o
ll 1
. n 0.1
Predicted label Predicted label
Confusion Matrix for the class - R3 gen scaling Confusion Matrix for the class - R3 load scale down

Rlgen Rlload R2gen R2load R3gen R3load

Tue label
Tue label

uracy

Tue label
Tue label

o

N
z z scaling scale scalling scale scalling scale
E E down down doEIﬁMERmRE&oFY
Y_
ESVM ®NN m®Logistic Regression Decision Tree J—
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Preliminary Results

* Achieved a 70% - 95% accuracy in cascade failure warning
« Multi-label optimal decision classification with SVM

Cascade failure warning classification with SVM Accuracy Score Comparision

. ) ) 1
Normalized confusion matrix

0.4 0.9
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Ongoing activities and future work

 Limitations and challenges
» Test cases are relatively small
« Scarcity of wildfire and grid asset datasets

Network connectivity/topology is difficult to encode in ML algorithms

o Partner w/ utilities

Reached out to PG&E, SCE
Scheduling regular meeting w/ PG&E wildfire (meteorology and operation) teams

* Next steps:

Investigate multiple machine learning techniques and compare their performances.
Capture wildfire ignition risks and the complexities of infrastructure investment/hardening.

Balance the desire to maximize grid reliability and to minimize network upgrade costs, e.g.
investment on distributed energy resources to enhance grid resilience.

Extend the current approach to larger networks, i.e. Western Electricity Coordinating Council
(WECC) models

Explore deep graph-based machine learning techniques that encode the temporal and spatial
network complexities
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Bin Wang, wangbin@Ibl.gov




Back-up Slides

Graph representation of
ru " WECC models w/

gl multiple areas. More
@ complex graph-based
e LS machine learning is
being investigated over
this large-scale network.
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Optimal Decision Making Strategy

Design optimal power flow problem to reduce load shedding and generator power variation with the
presence of wildfire ignition risks

Objective: Minimize load shedding, reduce generator power variation, and prevent cascade failure
min Z AD + z AP,
B | ¢ 1

load shedding generator power variation

Constraints: power flow constraints with transmission limit constraints

Algorithm: genetic algorithm (GA) that is parallelized

Initial population Fitness function evaluation  Selection Crossover Mutation
A1 EEEEE@ Gene V Before Mutation
n2 [T 1[111]1]| | chromosome | = Electric Grid 4 A1 [o]o]o|ofo]0] As [1]1]1]o]0]0
- simulation - - - After Mutation
A3 [0 o[1]1] (power flow) X g as [1[1]0[11]0]
Ad nnﬂnnﬂ Population x o
I I U.S. DEPARTMENT OF
00
: ENERGY
0 . 5 . . . . OFFICE OF
https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code- ELECTRICITY

€396e98d8bf3#:~:text=A%20genetic%20algorithm%20is%20a,offspring%200f%20the%20next%20generation.
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Background: Tool Development for Infrastructure

Response to Extreme Events

HAZARDS
(Farthquake )

Objective: Develop and apply state of the art
infrastructure analytics needed to support
infrastructure stakeholder requirements. These
analytics are used to characterize:

m Infrastructure system fragility, stability, and
resilience

m Infrastructure dependencies on natural systems
m Infrastructure interdependencies

m Economic and community interoperability with
infrastructure

U.S. DEPARTMENT OF

WEATHER EXTREMES ARE THE MOST FREQUENT AND SIGNIFICANT CAUSES OF 7 " ENERGY
WIDESPREAD INFRASTRUCTURE DISRUPTION Pacfi NIYESt.  ELECTRICITY




Enhancing Situational Awareness in Extreme Events:

Flood Example

« Capability Development is Guided by the EOC/Infrastructure
Mission and Relevant Questions:
« What is the spatial extent of flooding?
« When will the flood arrive?
« How long will the flood remain?
« How many people are at risk?
« Which infrastructure assets are at risk?

Oroville Spillway Failure, 2017 Hurricane Harvey Flood
« How Do We Support Flood Events? — — DimulatieuyiiES

 Predictive modeling and simulation
(real-time, near real-time)

* Imagery-based damage analytics

« Access and leverage previously
simulated events- Go to the WELL!

U.S. DEPARTMENT OF
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What 1s RIFT?

Rapid Infrastructure Flood Tool (RIFT)

Hydrodynamics
 Physics-based, state-of-the-art
numerical technigues and computing
resources
Data

» Readily available geospatial datasets

Decision Support

* Planning, response, recovery, and
mitigation

Targeted Audiences

e Infrastructure owner/operators federal RIFT is used to characterize local-scale impacts
state, and local emergency operation from large-scale, regional flood events
centers \?7/ ENERGY

Pacific Northwest OFFICE OF

NATIONAL LABORATORY E LECTRI CITY



Intended RIFT Applications

RIFT was developed for a diversity of events with potential to
disrupt infrastructure assets that lie outside of the floodway

Local Flood Control USACE
Districts

FEMA- NFIP '

Floodplain Channel Floodplain
= Extreme precipitation = Spring snowmelt
(e.g., rainfall-runOff) = Coastal ﬂooding W/ EﬁPAERmRE&OFY
= Dam failure = Tsunami Pacific Northwest OFFICE OF
7 L2vEs et = Post-fire runoff e ELECTRICITY



RIFT Data Requirements

Data Types and Sources

- RIFT was intentionally designed to ingest readily-available pata  [souces [ Type |

data to minimize requirements (source, topography) Rainfall NOAA Spatial, Temporal
Topography USGS, State, Local Spatial

« CONUS data is a first resource, but supplemented with local

Land Use\Land NLCD (USGS Spatial
data as needed and Usel (USG3) P
over

Soils NRCS, Local Spatial

River Gage USGS, NOAA, Local Spatial, Temporal
Quantitative Precipitation Levee\Dam USACE Spatial
Forecast

Infrastructure HSIP, State, Local Spatial

Topography

Quantitative Precipitation . U.S. DEPARTMENT OF
Estimate \g/ ENERGY
Pacific Northwest OFFICE OF

NATIONAL LABORATORY E L ECT RI C I TY



RIFT Data Products

 All data products are based on fine spatial-temporal evaluation of
flood depth and velocity

» Multiple derivative data products available to help support situational
awareness needs

 All data products readily ingestible in geospatial platforms
« Multiple formats available

Daysto Dry et i
<1
315
@ 5-10
= 10-15
M >15

>
: ) €

SRR

g =

Flood Dry Time

ly:'_.’ B Gy h 3 ) U.S. DEPARTMENT OF
Flood Wave Arrival Time \Tf/ ENERGY
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RIFT for Rapid Situational Awareness During Extreme

Events

Inland Flood Delivery

~() 13am

32 VA Dam Failure Delivery

RIFT has been utilized to enhance situational '.,., I
awareness in the emergency response community
for 15 years

lPADmFI e Delivery
N,

II dFIodDIlverv
N

APAD m Failure Delivery 4 Dam Failure Delivery

L P .

« Combination of archived simulations (WELL) and Rk _.é‘";F.M.,/,WT pa—
near real-time simulations b
,“iﬁ‘, .7:D1:|FII e Delivery

Inland Flood Delivery

« Create spatial awareness of flood hazards within at T N

. DC Discussion " Inland FbodDmvmy
m h 5:00pm 30 am’ | i
I n Utes to O u rS Crisis Action Activation 2 Dam Failure Delivery 10 Dam Failure Delivery
2:00pm ‘. 5:00pm N 8 pm

2018 CEE 09/10

« Growing number of stakeholders (federal, state,
local)

32 VA Dam Failures 4 Dam Failures
03days 0.1days il

9/10 QPF-Euro Rainfall Simulation
ays

9/12 QPF Rainfall Simulation
s

9 Dam Failures
ays B
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|||||||

Hurricane Florence Slmulatlon
Timeline and National Impact
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Inland Flood Delivery
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. 7:50am

3 Dam Failure Delivery

Inland Flood Delivery
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3 Dam Failure Delivery

5 Dam Failure Delivery

2 Dam Failure Delivery

| llnd Flood Delivery

Inland Flood Delivery
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RIFT for Characterization of Post-Fire Flood Impacts

« Fires have drastic impact on vegetative cover and soil
structure and have significant impact on the hydrology

* Increase in volume of runoff
* Increase in velocity of runoff

* RIFT can reflect fire changes through infiltration and surface
roughness parameterizations based on ground-based and
satellite-based burn severity and vegetation surveys

 RIFT provides a simulation testbed to identify locations of Devastating floods in downstream
high-impact consequences for Pre and Post-Event communities occurred following the Las

- Areas of previously undefined flood risk Conchas Fire in New Mexico (2011)
 Areas of high potential for erosion

* |dentify mitigating actions to optimize protection and | U5, DEPARTHENT OF
restoration at the wildland-urban interface ~~  ENERGY
Pacific Northwest OFFICE OF

NATIONAL LABORATORY E L ECT RI c I TY



Las Conchas Fire, New Mexico (2011)

« June 2011 fire in Northern New Mexico burned 150,000 acres
that threatened Los Alamos National Laboratory

« Comparison of pre and post fire runoff characteristics

(magnitude, timing)

4500
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~ = 50-Year Event, Post-Fire
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™ Las Conchas Burn Severity
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Severe
il [ o8 Aamos Canyon Watershed Boundary

35 4 Burn Severity Map

Pre and Post-Fire Runoff from
Design Storm Events
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Elevation (m)

Cameron Peak Fire, Colorado (2020)

* August 2020 fire that burned 208,000+ acres burned
in Colorado’s Larimer and Jackson County

« Quantify changes in burned-area runoff in the
headwaters of the Cache la Poudre River and local
areas of increased flood risk

4 ‘t ¥ .‘4. -

Cache la Poudre River Y A j_ s
2,167.50 IEs o S Y ' -’J. ‘ Ty

2,167.25

2,167.00

—Post Fire 100yr 6hr
—Pre Fire 100yr 6hr

2,166.75

Cameron Peak Fire Burn
Severity

2,166.50
2,166.25

2,166.00 *Most significant historical rainfall occurs

2,165.75 in the foothills, outside burned area

2,165.50
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2,165.25

~~  ENERGY

Pacific Northwest OFFICE OF

NJTIONAL LARDRA R ELECTRICITY
Change in Runoff Change in Local Flood Risk CTRIC
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Summary

* RIFT has been used to facilitate situational
awareness for a variety of extreme events,
Including dam failures, spring melt, hurricanes, and
other extreme rainfall events

* RIFT has been applied to post-fire conditions to
characterize downstream flood impacts

e Current RIFT efforts include cloud-based
automation to facilitate response and interaction
with emergency response community

EEEEEEEEEEEE
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Team RIFT

Mark Jensen

Data Scientist

Michelle Li
Earth Scientist

Cindy Rakowski

Computational Scientist
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David.judi@pnnl.gov




Questions? Contact our Speakers:

Xiaoyuan Fan
Pacific Northwest National Laboratory

xiaoyuan.fan@pnnl.gov

Qing Zhu
Lawrence Berkley National Laboratory

OZhu@lbl.gov

William Riley
Lawrence Berkley National Laboratory

wiriley@Ibl.gov

Mark Wigmosta

Pacific Northwest National Laboratory

Mark.Wigmosta@pnnl.gov

Robinson Negron-Juarez

Lawrence Berkley National Laboratory

Robinson.inj@Ibl.gov

Bin Wang
Lawrence Berkley National Laboratory

wangbin@Ibl.gov

Stewart Cedres
Office of Electricity

stewart.cedres@hq.doe.qov

Andre Coleman
Pacific Northwest National Laboratory

Andre.Coleman@pnnl.qov

David Romps
Lawrence Berkley National Laboratory

dromps@Ibl.gov

David Judi

Pacific Northwest National Laboratory

david.judi@pnnl.gov
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