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Dynamic Contingency Analysis Tool (DCAT)

DCAT simulates finer details of cascading events

• DCAT significantly improves how we 
prepare and plan for extreme events

• More realistic modeling enables 
effective decisions

• Faster computing technology

• Automatic simulations

• Prepare for extreme events

• Improved assessment of cascading 
outage impacts

• Plan for the future

• Provide information to identify grid 
enhancements



DCAT for Extreme Wildfire Event Planning & Mitigation

An illustration of WECC 2019 Wildfire Points [1]. 
[1] The 2020 State of Interconnection published by Western Electricity Coordinating Council (WECC). Available at: https://www.wecc.org/epubs/StateOfTheInterconnection/Pages/Western-Interconnection.aspx

Historical wildfire 
events evaluation

Corrective actions 
verification

Preventive mitigation 
planning



Hazard Contingency Modeling in DCAT  

asd
Processing of 
simulation results
• Database GUI
• Visualization

Hazard 
Contingency List

DCAT 
Hybrid Steady-state and 
Dynamic simulation

• Interconnection Grid Models 
• Protection system modeling
• Corrective Actions

Available Mitigation 
Plan List



DCAT Analytics – Database and Visualization Modules



DCAT Applied in Western Grid Reliability Analysis

DCAT evaluation of WECC 
Path 44 for 2011 Pacific 
Southwest Blackout, 
(a) Path flow plot provided 

in NERC Report [1]
(b) Simulated path flow in 

PNNL DCAT analysis [2] 
(full protection actions 
sequence automation).

(a) (b)

[1] “Arizona-Southern California outages on September 8, 2011”, Prepared by the staffs of the FERC and the NERC, April 2012.
[2] X. Fan, et al., "Bulk Electric System Protection Model Demonstration with 2011 Southwest Blackout in DCAT," 2020 IEEE Power & Energy Society General Meeting (PESGM), 
Montreal, QC, Canada, 2020, pp. 1-5. doi: 10.1109/PESGM41954.2020.9281441.



DCAT for Extreme Wildfire Event Planning & Mitigation 

Domain use case 
formulation

Future scenario 
synthesis

Stochastic impact 
evaluation



X

DCAT & EGRASS Can Be Extended for Wildfires

• Thousands of realistic dynamic cascading 
simulations

• Derive metric-based evaluation
• Preparation & Planning

• Mitigation & Corrective Actions

• Ranking & Recommendation

Apply 
Resiliency 

Improvement 

EGRASS: 
Geolocations of threat 

risk on Infrastructure

• Hurricane

• Wildfire

• Other extreme 

events



Status and Goals

• Goal

• To develop and provide a DCAT-based framework to evaluate and visualize the impact of 

wildfires on electricity infrastructure to mitigate service disruption and improve 

resiliency. 

• Status

• DCAT is protected by a pending U.S. patent and copyright

• Licenses are available for research, trials, and commercialization

• Collaborators included ERCOT, Siemens, BPA, GE, and EPRI; additional users, utilities, 
and vendors are welcome

• Contact PNNL Senior Commercialization Manager Peter Christensen at 
peter.christensen@pnnl.gov for more information 
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Team Produced Relevant Publications

Technical publications:

• Fan X., U. Agrawal, S.H. Davis, et al. 2020. "Bulk Electric System Protection Model 

Demonstration with 2011 Southwest Blackout in DCAT." In 2020 IEEE Power & Energy 

Society General Meeting (PESGM). doi:10.1109/PESGM41954.2020.9281441

• Vyakaranam B., P.V. Etingov, H. Wang, et al. 2020. "Database Management Module 

Framework for Dynamic Contingency Analysis and Visualization." In IEEE Power & 

Energy Society General Meeting (PESGM). doi:10.1109/PESGM41954.2020.9281566

• Davis S.H., M.A. Elizondo, X. Fan, et al. 2020. "Data Requirements for Application of 

Risk-Based Dynamic Contingency Analysis to Evaluate Hurricane Impact to Electrical 

Infrastructure in Puerto Rico." In CIGRE-US 2020 Next Generation Network Paper 

Competition. 

• Chen Y., K.R. Glaesemann, X. Li, et al. 2020. "A Generic Advanced Computing 

Framework for Executing Windows-based Dynamic Contingency Analysis Tool in 

Parallel on Cluster Machines." In IEEE Power & Energy Society General Meeting 

(PESGM). doi:10.1109/PESGM41954.2020.9281477

• G. Chin, B. McGary, K. Pierce, et al. 2020, "A Dynamic Contingency Analysis 

Visualization Tool," 2020 IEEE Power & Energy Society General Meeting (PESGM), 

doi: 10.1109/PESGM41954.2020.9281993.

• K. Sundar, M. Vallem, R. Bent, et al. 2019, "N-k Failure Analysis Algorithm for 

Identification of Extreme Events for Cascading Outage Pre-screening process," 2019 

IEEE Power & Energy Society General Meeting (PESGM), doi: 

10.1109/PESGM40551.2019.8973425.

• F. Dong, Vyakaranam B., N.A. Samaan, et al., "Restoration of System Security with 

Optimized Corrective Actions," 2018 IEEE Power & Energy Society General Meeting 

(PESGM). doi: 10.1109/PESGM.2018.8586309.

Institutional Reports:

• Vyakaranam B., N.A. Samaan, X. Li, et al. 2019. Dynamic Contingency 
Analysis Tool 2.0 User Manual with Test System Examples. PNNL-29105. 
Richland, WA: Pacific Northwest National Laboratory.

• Samaan N.A., J.E. Dagle, Y.V. Makarov, et al. 2017. Dynamic Contingency 
Analysis Tool (DCAT) User Manual with Test System Examples. PNNL-26197. 
Richland, WA: Pacific Northwest National Laboratory. 

• Samaan N.A., J.E. Dagle, Y.V. Makarov, et al. 2015. Dynamic Contingency 
Analysis Tool - Phase 1. PNNL-24843. Richland, WA: Pacific Northwest 
National Laboratory.

• Elizondo M.A., X. Fan, S.H. Davis, et al. 2020. Risk-Based Dynamic 
Contingency Analysis Applied to Puerto Rico Electric Infrastructure. PNNL-
29985. Richland, WA: Pacific Northwest National Laboratory.

• B. Vyakaranam, N.A. Samaan, M. Vallem, et al., "Modeling of Protection Relays 

using Generic Models in System-Wide Power System Dynamic Simulation 

Studies," 2018 IEEE Power & Energy Society General Meeting (PESGM), doi: 

10.1109/PESGM.2018.8586612.

• Q. Huang, B. Vyakaranam, R. Diao, et al., "Modeling zone-3 protection with generic 

relay models for dynamic contingency analysis," 2017 IEEE Power & Energy Society 

General Meeting (PESGM), , doi: 10.1109/PESGM.2017.8274534.

• N. Samaan, J.E. Dagle, Y.V. Makarov, et al., "Modeling of protection in dynamic 

simulation using generic relay models and settings," 2016 IEEE Power and Energy 

Society General Meeting (PESGM), doi: 10.1109/PESGM.2016.7741981.



Thank You!

xiaoyuan.fan@pnnl.gov



Sustainable Forest Biomass for Fire 
Mitigation
Mark Wigmosta – Pacific Northwest National Laboratory
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Restoring fire-prone forests in a changing climate

Efforts to improve forest health and reduce wildfire fuels are focused on 

reducing canopy cover in over-stocked forests via mechanical thinning 

and prescribed burning. 

More frequent, less intense wildfire

Reduced risk to electric transmission/distribution infrastructure

Reduced post-fire hydrologic impacts (flash floods, landslides, increased 

erosion, sedimentation, etc.)  

There is potential to leverage these investments to achieve 

Concurrent hydrologic benefits

Increased snowpack & summer streamflow

Increased flow to the hydrosystem

Economic and societal benefits through collection of residue for bioenergy

We examine the interplay among forest restoration, wildfire/smoke 

emissions, snowpack, streamflow, land sector C stocks, and biomass 

for energy across treatment scenarios using a decision support 

application designed for that purpose.

Unthinned

Thinned + Rx Burn



Metrics to quantify the tradeoff analysis

Fire

Burn intensity (flame length, crowning index)

Total carbon release

Smoke production (PM2.5 and PM10)

Biomass

Merchantable

Non-merchantable (residue for energy)

Hydrology

Snowpack characteristics

Streamflow (annual, monthly, late season)

Economics

Collection costs

Hauling costs

• Forest management is spatially 
explicit in annual timesteps.

• Values for key metrics quantify the 
reduction in wildfire risk and 
smoke emissions, available 
biomass, impacts to streamflow, 
and associated economics. 

• These spatially variable metrics 
help quantify the synergies and 
tradeoffs between objectives

• Trade-offs are reflected in the DST



Reduction in wildfire risk through forest restoration 

Flame length under all weather conditions, indicates the likelihood that direct fire 

suppression is an option and whether crownfires will initiate 

Current evaluation is for restored locations. We can also model change in likelihood of 

spread between treated and untreated locations, not shown here.

• Significant reduction in flame length on treated pixels



Forest canopy conditions impact the volume and timing 
of snowmelt and streamflow

In areas where snowpack supplies 
late season flows, targeted forest 
restoration can help increase 
critical summer low flows

Peak snow water equivalent (SWE) in the canopy gap is twice that of the 
adjacent forest, and snow cover remains ~three weeks longer 

Single location at U. of Idaho Experimental Forest



The economics of forest biomass depends on markets, 
processing, and transport costs

The road network is a major driver of delivered cost of residue

Distance and surface type

With three potential locations

Vast majority of residue could be obtained at the target cost 

using only the Leavenworth location



Examining the tradeoffs between wildfire, water, 
bioenergy, and economic sustainability

Upper Panel: Priority locations (warm colors) for forest treatments based on 

land allocation, derived benefits to hydrology, wildfire risk and smoke 

emissions reductions, available biomass, and economics

Lower Panel: Priority locations for individual objectives used in tradeoff 

analysis



PNNL-USFS Forest Restoration Collaboration

• 2014-2015: Development of a Distributed Hydrology Model for use in a 
Forest Restoration Decision Support Tool to Increase Snowpack in the Upper 
Columbia, Washington State Department of Ecology

• 2017-2022: Resource Assessment of Sustainable Biomass through Forest 
Restoration, US DOE Bioenergy Technologies Office

• 2020-2021: Refine and Pilot Test Upper Columbia Distributed Hydrology Soil 
Vegetation Model and Snow2Flow Decision Support Tool, Washington State 
Department of Ecology

• 2021: Improving the Timing and Volume of Hydrosystem Inflow through 
Targeted Forest Management, US DOE Water Power Technologies Office

• 2021-2022; Expanding Forest Management and Promoting Ecosystem Health 
Services through access to Environmental Markets, USFS Region 5 National 
Conservation Investments Fund
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Multi-Sensor Data Fusion for Active 
Wildfire Monitoring

Andre Coleman – Principal Investigator / Data Scientist
Neal Oman – Project Manager
Todd Hay – Chief Systems Architect
Jerry Tagestad – Remote Sensing Lead / Data Scientist
Jill Brandenberger – Project Advisor April 29, 2021

UNCLASSIFIED



Rapid Response Analytics for Situational Awareness

Driving Questions for Situational 

Awareness Support

What is the spatial extent of the hazard?

What is the timing of the hazard?

How many people are at risk?

What infrastructure are impacted or

at risk?

How Does PNNL Support Events 

(Pre-, Peri-, Post-Event)?

Predictive modeling and simulation

Leverage existing simulations 

(OpenWELL)

Assess existing/forecasted risk to 

infrastructure

Imagery-based damage analytics

UNCLASSIFIED



Rapid Response Analytics for Situational Awareness

35-year trend analysis indicates positive trend in economic loss1,2

Hydrologic events - 300% increase

Meteorological and climatological events - 200% increase

Geophysical events - 50% increase

The frequency, magnitude, and velocity of disaster events requires 

adaptations in disaster management operations

Current operational approaches are not necessarily equipped to handle the 

influx of diversely available information required for highly dynamic events

The disaster management community requires accurate, timely, and 

comprehensive impact assessments frequently throughout the event

≤24-hr recurrence; >24-hrs, usefulness degrades3

1 Hoeppe (2016) 2 Benfield (2018) 3 Hodgson, M.E. et al. (2014) UNCLASSIFIED



Rapid Analytics for Disaster Response (RADR)

UNCLASSIFIED



2020 Wildfire Season in Review

Graph: NIFC, 2021

For 2020 in the U.S.

10.3 million acres burned

1.4x higher than the 2010-2020 10-yr average; 3x higher than the 1990-

2000 10-yr average

Long-term trends suggest flat trend on the number of fires

Strong positive trend in the total acreage burned

CA: 5 of the top 20 largest fires

CO: 3 of the state’s largest fires

~18k structures lost

$3.6B in fire suppression costs

$16.6B in direct costs

i.e., insurance claims plus estimates for uninsured

Estimated $130-150B in indirect costs

i.e., environmental cleanup, lost business, tax revenue, property and 

infrastructure repairs

UNCLASSIFIED



Technology Needs in Wildfire Response

Use of high-resolution satellite imagery to help meet demand

Imaging aircraft are in high-demand – generally prioritized for high complexity fires

Persistent monitoring (10-15-minute intervals)

Automated algorithms to process imagery and generate analytics

Move away from human analyst image interpretation

Produce standardized map products in common geospatial data formats/delivery protocols

Imaging at 10m GSD (commonly used sensors at 375m and 1km GSD)

Automated early fire detection

Semi-continuous fire behavior forecasting with up-to-date high-fidelity inputs

UNCLASSIFIED



Remote Sensing of Wildfire

Sentinel-2 (MSI)

Sentinel-1 (SAR)

Landsat-8 (MSI)

VIIRS (MSI)

ECOSTRESS (MSI)

GEDI (LiDAR)

CBERS

ASTER (MSI)

Landsat-7 (MSI)

Sentinel-3 (MSI+)

GOES (MSI)

AWiFS (MSI)
LISS-III (MSI)

UNCLASSIFIED



Rapid Analytics for Disaster Response (RADR) - Wildfire 

Automated, end-to-end, cloud-based, open-

data solution that retrieves and utilizes 

specialized imagery from numerous high-

resolution (<30 m) earth observation 

satellites

Provide situational awareness on the active 

fire front, spot fires, scattered heat, post-

burn intensity, and unburned areas

Time-series results disseminated via 

website, mobile app, and web services

UNCLASSIFIED



Rapid Analytics for Disaster Response (RADR) - Wildfire 

Risk analytics for critical energy infrastructure

Where the fire is, how intensely it has burned, where it is going?

Critical for post-fire assessments / post-fire flood and debris flow risk

UNCLASSIFIED



Satellite

Observation

Day 1 –
Hour 10

Model

Day 1-

Hour 11→

Model

Day 1-

Hour 12 →

Model

Day 1-

Hour 13 →

Model

Day 1-

Hour x →

Satellite

Observation

Day 2 –
Hour 10

Wildfire Behavior Modeling

Time

-Satellite observations provide 

current system state (daily)

-Fire behavior models provide 

forecasted conditions in 

between observations (hourly)

Veg type
Veg height
Veg density

Veg structure
Veg stress
WUI Fuels

Soil moisture
Terrain

Meteorology UNCLASSIFIED



RADR-Fire Team

Andre Coleman – Principal Investigator (Andre.Coleman@pnnl.gov )

Neal Oman – Project Manager (Neal.Oman@pnnl.gov)

Todd Hay – Chief Systems Architect (Todd.Hay@pnnl.gov) 

Jerry Tagestad – Remote Sensing Lead (Jerry.Tagestad@pnnl.gov)

Jill Brandenberger – Project  Advisor (Jill.Brandenberger@pnnl.gov)

Russ Burtner – UI/UX Design
Daniel Corbiani – Cloud System Architect
Kyle Larson – Remote Sensing Developer
Lee Miller – Geospatial Developer
Corey Oldenberg – Cloud Developer
Bill Perkins – Fire Behavior Modeling

Daniel Farber – Fire Behavior Modeling
Marena Richardson – Software Engineer
Danielle Rubin - Software Engineer
Tim Seiple – Geospatial Cloud Developer
Yi Shaw – UI/UX Design

UNCLASSIFIED
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XAI Models of Wildfire Risk and Risk 
Management

Qing Zhu (qzhu@lbl.gov)

Lawrence Berkeley National Lab
04/29/2021

DOE National Lab Logo goes here



Overarching goals

1. Map wildfire risk with variable temporal scales

• e.g., day, week, month, seasonal scales

2. Evaluate effects of potential management on reducing wildfire risk

• e.g., prescribed fire, forest thinning, reduce litter/CWD fuel availability



Objectives

• Test hybrid modeling framework with mechanistic/AI (XAI) fire models for risk 

assessment

• Model wildfire risk probability, dynamically across space and time

• Model multiple management practices and their potential impacts

• Continuously improve the risk model with transfer learning and using 

observational data

+



Technical Approach

Process-based risk index: Interpretable, less accurate

AI-based risk estimate: accurate, but less interpretable and 
no physical constraints Process-based Fire model

Drivers

Ignition 

factors

Suppression 

factors

Fuel 

conditions

Climate 

factors

Simulated risk

AI surrogate  fire model

Pre-train

Pre-train

Observations finetuned surrogate 

fire model (transfer learning)

Pre-trained parameters

output

load

Fine-tune

Fine-tuned machine 

learning parameters
Fire risks

outputoutput

Step 1

Step 2

Step 3



Technical Approach

Process-based Fire model

Drivers

Ignition 

factors

Suppression 

factors

Fuel 

conditions

Climate 

factors

Simulated risk

Machine learning-based 

surrogate  fire model

Pre-train

Pre-train

Satellite data finetuned surrogate 

fire model (transfer learning)

Pre-trained parameters in the 

machine learning model

output

load

Fine-tune

Fine-tuned machine 

learning parameters
Fire risks

outputoutput

Step 1

Step 2

Step 3

Management

Step 4

Simmonds et al., 2021



Applications over CA

Our XAI model Random forest model (Jing Li 2020)

P
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Months in advance
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re

Months in advance

Jing Li 2020

2012-2016: 368 large fires (Burned area > 4 𝐾𝑚2), 216 small fires



Capability Summary

Wildfire Early 
warning system 

Fire risk map with weekly leading time

Fire risk map with monthly leading time

Fire risk map with daily leading time

Fire risk map with multiple time leads

Fire risk map with seasonal leading time

In 3 month In 6 month Wildfire 
mitigation tool

Monthly-seasonal leading time: e.g., 

prescribed fire, forest thinning

Daily-weekly leading time: e.g., 

monitoring, resource allocation, 

powerline shutdown

Fire risk map with/without management

+
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Predictability of Fire Behavior and Effects in 
the Wildland Urban Interface in California
Robinson Negrón-Juárez
robinson.inj@lbl.gov



Camp Fire- GOES 16 (band7:3.9 µm)

Paradise

85 deaths

https://ylfeng.users.earthengine.app/view/fireca



Camp Fire- GOES 16 (band7:3.9 µm)

Paradise

85 deaths

https://ylfeng.users.earthengine.app/view/fireca

How can we predict fire behavior?



Biogeophysical Variables

Vegetation type, structure, conditions

Soil type

Soil moisture

Topographic characteristics (slope, 

aspect elevation)

Weather/Climate

Wildfire history (spread, burn rate and 

intensity, etc.)

Wildfire

Behavior 

Predictions

ML Fire Behavior Model:  Interactively Calibrated with Satellite Data

Our Strategy

How does vegetation regrow after fires?

Machine Learning (ML)

What are the critical mechanisms driving the predictability of fire behavior?



•Yosemite

Landsat 5 Channels

Steamboat Fire 1990-08-07, 24.7 km2 (6,106 ac)

Forest Recovery/Regrowth

Yosemite 

National

Park

Validate/improve models

Source: R. Negron-Juarez (unpublished)
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FATES simulates and predicts growth, death, and regeneration of plants

FATES (The Functionally Assembled Terrestrial Ecosystem Simulator) reproduced the trajectory and 

recovery time for windthrows and clear-cutting events 

Negron-Juarez et al. 2020, Biogeosciences

https://doi.org/10.5194/bg-17-6185-2020

Windthrows Clear-cutting Burning



Summary

• We can implement a Machine Learning model for accurate short-term prediction of wildfire 

behavior and effects

• We have created a framework that integrates remote sensing, field data and modeling for regrowth 

following fires

• We can produce reliable short/long term predictions of fire behavior and effects



Sep 7, 2020



Robinson Negron-Juarez
Lawrence Berkeley National Lab
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Climate modeling for California planning
David M. Romps

LBNL
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Lightning is made by storms



Romps and Seeley, in prep



We find variables that 
correlate with 

lightning today…

The balance of evidence → global warming increases US 
lightning
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Romps et al. (2014)



The balance of evidence → global warming increases US lightning

We find variables that 
correlate with 

lightning today…

…and plug those into 
global climate models.

They predict a ~50% 
increase by 2100. 0%

50%

100%

Four different “variables”

Change in 
lightning 
by 2100

R
o

m
p

s 
(2

0
1

9
)



We can speculate that 
more lightning
→ more wildfire

But a 50% increase in 
lightning by 2100 is 

not the big story

The big story is the 

direct effect of warming 
on the flammability



1985 2000 2015 2100

An extra 100% already 
from direct effect of 
warming on vegetation

An extra ~50% 
by 2100 from 
increased 
lightning ?

A
cr

es
 b

u
rn

ed

without
warming

with
warming

Abatzoglou and 
Williams (2016)

Changes to ecosystems

Changes 
to rain

Changes 
to wind
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Attention-Based Long-Short-Term-Memory Model

Wildfire prediction with flexible lead time

W.J. Riley
Lawrence Berkeley National Laboratory 04/28/2021

DOE National Lab Logo goes here



Overarching goals

• Burned areas predictions with high 

accuracy and flexible lead time: 

• Up to 8-months ahead of fire season

• Interpretable

• Example strategy described here covers 

14 GFED global wildfire regions, including 

the U.S. 

• Currently at 0.5° resolution

• Southern Hemisphere South America, 
Northern Hemisphere Africa, Southern 
Hemisphere Africa

• Approach is only limited by resolution of 

input information



Objectives

• Explore multiple Machine Learning (ML) methods for wildfire prediction

• Enhance interpretability of ML model with attention mechanism

• Diagnosis of mechanistic relationships underlying wildfire prediction

• Integrate impacts of historical local condition memory on wildfire burned area

• Integrate impacts of oceanic forcing (e.g., NINO, AMO, TNA, TSA indices) on wildfire burned area



Technical Approach

Ensemble of ML models:
• Random forest
• Decision Tree
• Gradient Boosting Decision 

Tree
• Support Vector Regression
• Long-Short-Term-Memory
• Interpretable Long-Short-

Term-Memory



Applications

Examples for major tropical wildfire regions.

Long dependency of burned area on 
historical memory of local wetness

Yuan et al. (in prep.)



Longer-Term Prediction

• Integrating ocean 

indices improves 6-8 

month lead time 

predictions



Capability Summary

• High accuracy prediction across space and time

➢Short lead time (1-4 month) prediction use local conditions

➢Longer lead time (5-8 month) prediction rely on oceanic 
precursors 

• Interpretable ML model reveals process interactions

➢Non-linearity of environmental controls

➢Spatial heterogeneity of dominating controller

• Readily applicable for U.S. or CA-specific wildfire prediction
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Data-Driven Wildfire Risk Model and Grid 
De-Energization Strategies
Bin Wang, Research Scientist, 
wangbin@lbl.gov

4/29/2021

DOE National Lab Logo goes here



Wildfire has cause significant damages in past decades

• Largest wildfire season in CA 2020: 9,639 fires had burned 4,397,809 acres [1]

• PG&E file of bankruptcy due to Campfire 2018: powerline ignition caused wildfire killed 84 people and 9.3 billion in 

housing damage [2]

• To prevent wildfire event, PSPS(public safety power shutoff) in 2019 turned off millions of customer accounts, causing 

huge economic and society impacts [3]

Campfire 2018
[1] 2020 National Large Incident Year-to-Date Report (PDF). Geographic Area Coordination Center(Report). National Interagency Fire Center. December 21, 2020. Archived from the original (PDF) on December 29, 2020. 

Retrieved January 13, 2021.

[2] https://www.nytimes.com/2020/06/16/business/energy-environment/pge-camp-fire-california-wildfires.html

[3] P. Gas and E. Company, “Pacific gas and electric companyamended 2019 wildfire safety plan,” tech. rep., 2019.



Data-driven Wildfire Risk Model

• Goal: Predict power-grid-induced wildfire probability and future fire exposure risks in transmission 

and distribution systems to inform better de-energization strategies. The data-driven methods will 

map the wildfire ignition risks to powerlines. 

• Methodology: Machine learning techniques that leverage enormous data sets on weather and 

infrastructure.

Data-driven risk models

Weather and vegetation data
• Air temperature
• Dead fuel moisture
• Evapotranspiration
• Mean daily wind speed
• Maximum daily wind speed

• Maximum daily gust wind Speed
• Precipitation
• Tree height, etc.

Grid Infrastructure data
• Conductor 

Age/Material/Size
• Line length
• Transformer age
• Voltage level, etc. 

M.L. Models
(Logistic regression, etc. )

Risk
model

When
Where
How



Transmission System Risk Model

• Logistic regression model to predict the wire-down events in the transmission system

• Training data: year 2015-2018 weather, vegetation, and infrastructure data with total 83,180 non-
wire-down records and 71 wire-down records. 

• Test data: year 2019 with 21,348 non-wire-down records and 34 wire-down records

Confusion matrix (threshold = 0.5)

Definition Score

Recall TP

TP+FN

0.76

True negative rate TN

TN+FP

0.78

Actual Values

Positive (1) Negative (1)
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e 
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Blue curves: historical wire-down events



Wildfire Exposure Risk Model

https://www.energy.ca.gov/sites/default/fil
es/2019-12/Forests_CCCA4-CEC-2018-
002_ada.pdf

• Applied UC Merced model to project wildfire exposure risk of transmission lines based on historical records

• Accounted for multiple wildfire ignition sources:

• Environmental ignitions (natural causes: lightning, etc.; human causes, e.g. campfire, etc.)

• Powerline ignition risk



Data-driven decision-making framework

• Goals:

• Develop data-driven optimal decision-making (de-energization and power shut-off) strategies given the 
wildfire risks as inputs and evaluate the reliability and economics implications of various fire-related 
planning and operation policies



Optimal Decision Making Preliminary Results

• Assume the powerline with high wildfire risk shut-downs, perform the proposed strategy

Optimal load shedding

Initial line outage

branch load/branch capacities (%) branch load/branch capacities (%)

Line overload at cascade stage 1 
without optimal load shedding

Initial line outage
Line overload



Optimal Decision Making Preliminary Results

• Assume the powerline with high wildfire risk shuts down, perform the proposed strategy

Optimal load shedding

2
1

4

3

4

5

5

Cascading failure without 
optimal load shedding

Initial line outage Initial line outage



Data-driven Optimal Decision Making Framework

• To reduce calculation complexity, a data-driven model is developed based on the OPF problem

• Map the OPF problem to a multi-label classification problem

Data-driven problem modeling

• Generator status 
(𝑃𝑔)

• Load profile (𝑃𝑑, 
𝑄𝑑)

• Powerline ignition 
risk topology (𝑁)

Features

• Generator scale up 
(0/1)

• Generator scale 
down (0/1)

• Load shedding (0/1)

Cascade failure 
prevention

• Cascade failure (0,1)

Regional multi-label 
outputs

OPF results

Region 1

Region 2

Region 3

Classification models

Support vector 
machine (SVM)

Neural network

Logistic regression Decision Tree



Transmission Network Datasets

RTS-GMLC Test Case

Map of the Reliability Test System-Grid Modernization Lab Consortium (RTS-

GMLC) system overlaid on the southern California, Nevada, and Arizona 
region. Blue and yellow dots represent wind and solar resources, respectively.

ACTIVSg10k: 10000-bus synthetic grid on 

footprint of western United State

https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg10k/

https://github.com/GridMod/RTS-GMLC



Preliminary Results

• Accuracy of 50% – 70% classification (line overload) prediction is achieved using support vector 

machine and multi-layer NN

• Multi-label optimal decision classification with SVM
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Preliminary Results

• Achieved a 70% - 95% accuracy in cascade failure warning

• Multi-label optimal decision classification with SVM

Cascade failure warning classification with SVM
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Ongoing activities and future work

• Limitations and challenges
• Test cases are relatively small
• Scarcity of wildfire and grid asset datasets
• Network connectivity/topology is difficult to encode in ML algorithms

• Partner w/ utilities
• Reached out to PG&E, SCE
• Scheduling regular meeting w/ PG&E wildfire (meteorology and operation) teams

• Next steps:
• Investigate multiple machine learning techniques and compare their performances.
• Capture wildfire ignition risks and the complexities of infrastructure investment/hardening.
• Balance the desire to maximize grid reliability and to minimize network upgrade costs, e.g. 

investment on distributed energy resources to enhance grid resilience.
• Extend the current approach to larger networks, i.e. Western Electricity Coordinating Council 

(WECC) models
• Explore deep graph-based machine learning techniques that encode the temporal and spatial 

network complexities



Team
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Back-up Slides

Graph representation of 
WECC models w/ 
multiple areas. More 
complex graph-based 
machine learning is 
being investigated over 
this large-scale network. 



Optimal Decision Making Strategy

• Design optimal power flow problem to reduce load shedding and generator power variation with the 

presence of wildfire ignition risks

• Objective: Minimize load shedding, reduce generator power variation, and prevent cascade failure

min෍

𝐺

Δ𝐷 +෍

𝐺

Δ𝑃𝑔

• Constraints: power flow constraints with transmission limit constraints

• Algorithm: genetic algorithm (GA) that is parallelized

load shedding generator power variation

https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-
e396e98d8bf3#:~:text=A%20genetic%20algorithm%20is%20a,offspring%20of%20the%20next%20generation.



Rapid Infrastructure 
Flood Tool (RIFT)

David R. Judi, PhD

April 29, 2021



Background: Tool Development for Infrastructure 
Response to Extreme Events

Objective: Develop and apply state of the art 
infrastructure analytics needed to support 
infrastructure stakeholder requirements. These 
analytics are used to characterize:

◼ Infrastructure system fragility, stability, and 
resilience

◼ Infrastructure dependencies on natural systems

◼ Infrastructure interdependencies

◼ Economic and community interoperability with 
infrastructure

WEATHER EXTREMES ARE THE MOST FREQUENT AND SIGNIFICANT CAUSES OF 
WIDESPREAD INFRASTRUCTURE DISRUPTION



Enhancing Situational Awareness in Extreme Events: 
Flood Example

• Capability Development is Guided by the EOC/Infrastructure 

Mission and Relevant Questions:

• What is the spatial extent of flooding?

• When will the flood arrive?

• How long will the flood remain?

• How many people are at risk?

• Which infrastructure assets are at risk?

• How Do We Support Flood Events?

• Predictive modeling and simulation
(real-time, near real-time)

• Imagery-based damage analytics

• Access and leverage previously
simulated events- Go to the WELL!

Hurricane Harvey Flood 
Simulation Timeline

Oroville Spillway Failure, 2017



What is RIFT?

• Rapid Infrastructure Flood Tool (RIFT)

• Hydrodynamics

• Physics-based, state-of-the-art 
numerical techniques and computing 
resources

• Data

• Readily available geospatial datasets

• Decision Support

• Planning, response, recovery, and 
mitigation

• Targeted Audiences

• Infrastructure owner/operators, federal, 
state, and local emergency operation 
centers

RIFT is used to characterize local-scale impacts 
from large-scale, regional flood events



Intended RIFT Applications

RIFT was developed for a diversity of events with potential to 

disrupt infrastructure assets that lie outside of the floodway

Oroville Dam, 2017

▪ Extreme precipitation 
(e.g., rainfall-runoff)

▪ Dam failure

▪ Levee failure

▪ Spring snowmelt

▪ Coastal flooding

▪ Tsunami

▪ Post-fire runoff



RIFT Data Requirements

• RIFT was intentionally designed to ingest readily-available 

data to minimize requirements (source, topography)

• CONUS data is a first resource, but supplemented with local 

data as needed

Data Sources Type

Rainfall NOAA Spatial, Temporal

Topography USGS, State, Local Spatial

Land Use\Land 
Cover

NLCD (USGS) Spatial

Soils NRCS, Local Spatial

River Gage USGS, NOAA, Local Spatial, Temporal

Levee\Dam USACE Spatial

Infrastructure HSIP, State, Local Spatial

Data Types and Sources

Quantitative Precipitation 
Forecast

Quantitative Precipitation 
Estimate

Topography



RIFT Data Products

• All data products are based on fine spatial-temporal evaluation of 

flood depth and velocity

• Multiple derivative data products available to help support situational 

awareness needs

• All data products readily ingestible in geospatial platforms

• Multiple formats available

Maximum Flood Depth

Flood Wave Arrival TimeFlood Dry Time



RIFT for Rapid Situational Awareness During Extreme 
Events

RIFT has been utilized to enhance situational 

awareness in the emergency response community 

for 15 years

• Combination of archived simulations (WELL) and 

near real-time simulations

• Create spatial awareness of flood hazards within 

minutes to hours

• Growing number of stakeholders (federal, state, 

local)

Hurricane Florence Simulation 
Timeline and National Impact



RIFT for Characterization of Post-Fire Flood Impacts

• Fires have drastic impact on vegetative cover and soil 

structure and have significant impact on the hydrology

• Increase in volume of runoff

• Increase in velocity of runoff

• RIFT can reflect fire changes through infiltration and surface 

roughness parameterizations based on ground-based and 

satellite-based burn severity and vegetation surveys

• RIFT provides a simulation testbed to identify locations of 

high-impact consequences for Pre and Post-Event 

• Areas of previously undefined flood risk

• Areas of high potential for erosion

• Identify mitigating actions to optimize protection and 
restoration at the wildland-urban interface

Devastating floods in downstream 
communities occurred following the Las 
Conchas Fire in New Mexico (2011)



Las Conchas Fire, New Mexico (2011) 

• June 2011 fire in Northern New Mexico burned 150,000 acres 

that threatened Los Alamos National Laboratory

• Comparison of pre and post fire runoff characteristics 

(magnitude, timing)

Pre and Post-Fire Runoff from 
Design Storm Events

Burn Severity Map



Cameron Peak Fire, Colorado (2020)

• August 2020 fire that burned 208,000+ acres burned 

in Colorado’s Larimer and Jackson County

• Quantify changes in burned-area runoff in the 

headwaters of the Cache la Poudre River and local 

areas of increased flood risk

Change in Runoff Change in Local Flood Risk

Cameron Peak Fire Burn 
Severity

*Most significant historical rainfall occurs 
in the foothills, outside burned area



Summary

• RIFT has been used to facilitate situational 

awareness for a variety of extreme events, 

including dam failures, spring melt, hurricanes, and 

other extreme rainfall events

• RIFT has been applied to post-fire conditions to 

characterize downstream flood impacts

• Current RIFT efforts include cloud-based 

automation to facilitate response and interaction 

with emergency response community
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Xiaoyuan Fan
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Qing Zhu
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Lawrence Berkley National Laboratory
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David Romps
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Bin Wang
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