Wildfire Webinar Series: Webinar 3

Modeling & Analytical Tools

April 22, 2021
Vanessa Z. Chan
Chief Commercialization Officer and Director
Office of Technology Transitions
Probabilistic Wildfire Threat Model for Electric Systems

Edgar Portante, Sr. Energy Systems Engineer

Steve Folga, Manager, Modeling & Simulation Group

Mark Petri, Overall Grid Program Manager
BASIC PURPOSE OF THE PROBABILISTIC WILDFIRE THREAT MODEL
(Model based on the Monte Carlo Technique)

- Provide stakeholders the ability to assess the risk posed by wildfires to regional or local electric infrastructure.
 - Given a high-level description of the scenario, evaluate the possible occurrence of wildfire in the region of interest.
 - Generate fragility curves (damage functions) for use to determine damage levels of electric assets given the fire intensity and/or wildfire zone perimeters/coverage.
 - Generate a list of possible at-risk electric assets that will serve as input to the probabilistic grid simulator (Enhanced EPfast).
 - Assess impacts (using EPfast) of the de-energization of the affected electric assets on the overall grid performance in a probabilistic fashion using the Monte Carlo technique. Measure impacts in terms of expected load loss, power flow re-routing, and economic dispatch cost (production cost).
MODELING APPROACH AND ARCHITECTURE

Monte Carlo Framework

- Random Sampling of Stochastic function (Is there fire or no fire?)
- Network branch, transformers, and node files
- Normal & Ab-normal FORs
- Random Sampling of FORs for asset status definition
- Modify service status of:
 - generators,
 - lines,
 - transformers based on site-specific occurrence of wildfire
- Further Modify service status of:
 - generators,
 - lines,
 - transformers based on random number
- EPFAST Simulation
- Repeat 2,000 times

Graphs
- Scatter diagram
- Exceedance Curve
- Frequency graphs
- Probability Distribution
- Cumulative probability curve

Tables
- Reliability Indices
- Data sheets

Figure 8: Projected change in future fire risk

Ketch-Byram Drought Index
11/21/2005 (14 day outlook)
MODEL INPUTS: ELECTRIC INFRASTRUCTURE, FRAGILITY CURVES, AND FIRE PROBABILITY HEAT MAPS

- **FIRE IGNITION PROBABILITY HEAT MAPS**
 - UCLA Merced Index
 - KBDI Drought indices
 - FDI Fire Danger Index

- **FRAGILITY CURVES**
 - probabilistic damage function
 - binary damage function

- **ELECTRIC INFRASTRUCTURE LAYER**
 - regional
 - local

- **HISTORICAL WILDFIRE PROGRESSION MAPS**
 - empirical wildfire patterns
 - empirical wildfire intensities.
MODEL OUTPUT: FIVE PROBABILISTIC GRAPHS

MW loss scatter diagram

MW loss frequency distribution graph

MW loss exceedance curve

MW loss probability distribution curve

MW loss cumulative probability distribution curve
MODEL OUTPUT: SEVEN RELIABILITY INDICES

- Allow comparison of system performance before and during event of wildfire.

- Expected load loss can be used to assess cost of unserved energy.

Reliability Indices

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Reliability Index</th>
<th>System 1 (A)</th>
<th>System 2 (B)</th>
<th>Ratio (B/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Expected Ave Load Loss (MW)</td>
<td>284</td>
<td>1,365</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Expected Ave load loss as % of total sys load (%)</td>
<td>7%</td>
<td>34%</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Probability of Exceeding System 1's Expected Ave load loss (%)</td>
<td>22%</td>
<td>90%</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Probability of zero load loss (%)</td>
<td>70%</td>
<td>2%</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Probability of losing 50% or more of total sys load</td>
<td>5%</td>
<td>24%</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Expected Maximum Load Loss (MW)</td>
<td>2,941</td>
<td>3,470</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Expect Max Load Loss as percent of total system load (%)</td>
<td>74%</td>
<td>87%</td>
<td>1</td>
</tr>
</tbody>
</table>
Contains list of the 2,000 cases simulated by the model.

Each case has an assigned seed number to allow for recovery/extraction of specific cases of interest.

Extracted case can be studied in more detail.
A. The Probabilistic Threat Model can Potentially have following capabilities:

- assess risk in terms MW loss from a variety of curves and tables.
- compare system performance pre-event and during event via reliability indices.
- indicate alternate routing paths if there is no load loss by extracting no-load loss cases of interest from out of 2,000 simulated cases.
- quantify increase in production cost due to re-routing or changes in generation dispatch.

B. Areas Needing Further Research or Effort:

- collection or development of fire probability heat maps for more regions of interest.
- development of wildfire fragility curves for electric assets.
- use of high-speed computers for increased Monte Carlo iterations and for analysis of broader regions of interest in finer geographic resolutions.
Probabilistic Wildfire Threat Model for Electric Systems

Edgar Portante, Steve Folga, Mark Petri - Argonne National Laboratory
Wildfire Risk Modeling

Feng Qiu, Manager, Advanced Grid Modeling, Optimization and Analytics, Argonne National Laboratory
Capability Summary

Objectives:
• Better understand the contributing factors of wildfire caused by power delivery
• Better understand the dynamics of wildfire trend
• Predict wildfire incidents and outages

Capabilities:
• Wildfire and outage analytical tools with statistical methods, stochastic process models, and machine learning

Potential Users:
• Utilities (electricity, water, etc.) that do not own dedicated wildfire and outage tools
• Research community
• Policy makers, stakeholders, community developers, etc
Contributing Factors: Wildfire Ignitions by Power Systems

- Three factors required for a wildfire ignition by power system infrastructure:
 - Fuel
 - Weather
 - Ignition

Fuel
- Area filled with dried out or dead vegetation

Weather
- Wind Speed
- Wind Gust
- Temperature
- Humidity
- Total/Rate Precipitation

Ignition
- Spark from power system infrastructure caused by:
 - Equipment failure
 - Contact by:
 - Vegetation
 - Animal
 - Other

Fire Incident Reports

Fire and Drought Indexes

Static and Dynamic Power System Modeling
Fire danger indices provide an estimation of the wildfire risk. We have developed the capability to determine the following commonly-used indices for a range of time scales, from near real-time to a week, to seasonal outlook, to the longer-term projection over the next decades at high spatial (4km and 12km) resolutions.

a) KBDI (Keetch-Byram Drought Index) [3,4]
- Applied by U.S. Forest Service (USFS), Texas Forest Service, U.S. Army

b) FPI (Fire Potential Index) [5,6]
- Applied by USFS, United States Geological Survey (USGS)
- Proprietary versions of FPI are being used by power utilities (e.g., PG&E, SCE)

c) CFWI (Canadian Fire Weather Index) [6,7]
- Applied by the Canadian Forest Service and variations have been adopted by Australia, France, and Croatia.
- d) A machine-learning fire danger model is being developed

Methodologies

• **Statistics Analysis**
 - Ordered logistic regression
 - Association rules
 - Decision tree

• **Hot Spot**
 - Emergent hot spot analysis

• **Stochastic Process**
 - Spatial-temporal point process
Data Sets

Data Selection

1. PG&E, SCE, and SDG&E’s Fire Incident Data 2014 - 2019:
 - contact from object,
 - date,
 - equipment failure,
 - geographic location,
 - material of origin,
 - outage,
 - size (categorical),
 - time, and
 - utility name,
 - voltage,
 - among other variables

2. NLDAS Primary Forcing Data (Hourly):
 - potential evaporation,
 - pressure,
 - specific humidity,
 - temperature,
 - total precipitation,
 - relative humidity,
 - wind U component,
 - wind V component, and
 - wind speed.

3. USGS Fire Forecast:
 - fire potential index (FPI) and
 - large fire probability (LFP)

4. LandFire Existing Vegetation Type (EVT) and Height (EVH):
 - fuel class name,
 - physiognomy,
 - physiognomic order,
 - physiognomic class, and
 - physiognomic subclass.

5. Environmental Protection Agency:
 - Level III ecoregion and
 - Level IV ecoregion

6. CPUC Fire Threat Map:
 - Tier 2 – Elevated and
 - Tier 3 - Extreme

Statistical Analysis

- Ordered Logistic Regression

Model

<table>
<thead>
<tr>
<th>6 Features</th>
<th>8 Features</th>
<th>9 Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weather:</td>
<td>Weather:</td>
<td>Weather:</td>
</tr>
<tr>
<td>• potential evaporation</td>
<td>• potential evaporation</td>
<td>• potential evaporation</td>
</tr>
<tr>
<td>• pressure</td>
<td>• pressure</td>
<td>• pressure</td>
</tr>
<tr>
<td>• specific humidity</td>
<td>• specific humidity</td>
<td>• specific humidity</td>
</tr>
<tr>
<td>• temperature</td>
<td>• temperature</td>
<td>• temperature</td>
</tr>
<tr>
<td>• total precipitation</td>
<td>• total precipitation</td>
<td>• total precipitation</td>
</tr>
<tr>
<td>• wind speed</td>
<td>• wind speed</td>
<td>• wind speed</td>
</tr>
</tbody>
</table>

Fire forecast:

- Not statistically significant
- Statistically significant
- Statistically significant

Results may be further improved by including power delivery information, e.g., power flow.
Statistical Analysis

- Association rules
 - Identifies frequently occurring patterns on a dataset.
 - Makes predictions from subsets of co-occurring past events.

9 Features

Weather:
- potential evaporation
- pressure
- specific humidity
- temperature
- total precipitation
- wind speed

Fire forecast:
- fire potential index
- large fire probability

Vegetation:
- physiognomy

Examples of identified association rules

<table>
<thead>
<tr>
<th>Developed-Roads</th>
<th>Fire Size</th>
<th>Support</th>
<th>Confidence</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>No precipitation, Wind speed [2.47,4.59]</td>
<td>< 0.25 Acres</td>
<td>23%</td>
<td>54%</td>
<td>511</td>
</tr>
<tr>
<td>No precipitation, Temperature [14.8,21.7]</td>
<td>< 0.25 Acres</td>
<td>19%</td>
<td>55%</td>
<td>426</td>
</tr>
<tr>
<td>No precipitation, FPI [52.6,72]</td>
<td>< 0.25 Acres</td>
<td>17%</td>
<td>57%</td>
<td>375</td>
</tr>
<tr>
<td>No Precipitation, LFP [27.8,37]</td>
<td>< 10 Acres</td>
<td>8%</td>
<td>24%</td>
<td>187</td>
</tr>
<tr>
<td>FPI [72,99]</td>
<td>< 10 Acres</td>
<td>7%</td>
<td>24%</td>
<td>171</td>
</tr>
</tbody>
</table>

Definition

- **Support**: How often a given rule appears in the data set.
- **Confidence**: The amount of times a given rule appears, turns out to be true.
- **Count**: Number of times the rule appears in the data set.
Statistical Analysis

- Decision Trees

9 Features
- Weather:
 - potential evaporation
 - pressure
 - specific humidity
 - temperature
 - total precipitation
 - wind speed

- Fire forecast:
 - fire potential index
 - large fire probability

- Vegetation:
 - physiognomy

Model Accuracy
70%

Fire Size

<table>
<thead>
<tr>
<th>Size</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Structure Only</td>
<td>0</td>
</tr>
<tr>
<td>1. 1 meter - 3 meters</td>
<td>0.03</td>
</tr>
<tr>
<td>2. 3 meters - 0.25 Acres</td>
<td>0.86</td>
</tr>
<tr>
<td>3. 0.26 - 9.9 Acres</td>
<td>0.07</td>
</tr>
<tr>
<td>4. 10 - 99.9 Acres</td>
<td>0</td>
</tr>
<tr>
<td>5. 100 - 299.9 Acres</td>
<td>0</td>
</tr>
<tr>
<td>6. 300 - 999.9 Acres</td>
<td>0.03</td>
</tr>
<tr>
<td>7. 1000 - 4999.9 Acres</td>
<td>0</td>
</tr>
<tr>
<td>8. > 5000 Acres</td>
<td>0</td>
</tr>
</tbody>
</table>
Emergent Hot Spot Analysis

Emergent Hot Spot Analysis of PG&E, SCE, and SDGE’s 2014-2019 Fire Incident Reports

Identifies **trends** in the clustering of point densities (**counts**) in a space-time cube.

New hot spots / cold spots – location that have never had an increasing / decreasing trend before

Sporadic hot spots / cold spots – location that is on and off an increasing / decreasing trend

Oscillating hot spots / cold spots – location that shows an increasing / decreasing trend in the last time a decreasing / increasing trend a time before.
Spatial-temporal point process (STPP) model:

- Models the conditional intensity, i.e., the probability of an event occurring at time and location given history.
- It captures spatial-temporal correlation among events.
- Leverages available features (e.g., FPI, weather variables)
- Probabilistic generative model from which fire events can be simulated.

Daily Risks and True Events at grid 143
precision=0.02, recall=0.35, F1=0.04

2014 – 2019 Fire Incidents
By EcoRegion Lvl 4
Power Outage Analysis and Prediction

- Near real-time outage data
 - Collected from public websites since 2018
 - At city/county/zip code resolution
 - Refresh every 3-15 minutes

- Weather record/forecast data
 - From NOAA
 - 100+ fields, including wind, temperature,…
 - 3-km resolution
 - Refresh every 15 minutes

- Studied regions
 - Massachusetts
 - Georgia (Georgia Power)
 - North & South Carolinas (Duke)
Motivation: Multiple dimensions of grid resilience

- Grids in different regions are vulnerable to different weather variables.
- Figures show how the outages develop with regard to accumulated wind force.
- The jumps in blue lines indicate when large-scale outages occur. The earlier the jump occurs, the less accumulated impacts the grid can absorb.
- The three figures on the right suggest that, among MA, GA, and NC&SC,
- GA grid can withstand more accumulated wind force. However, once
Methodology

• A spatial-temporal model: consider both outage evolution in time and interactions among geographic locations

• Assumptions
 • # outages at a location: a multivariate non-homogeneous Poisson process
 • Outages at a location results from the combination of:
 • (A) direct weather cumulative impacts
 cumulative: weather in the past d days matters; recent weather plays a bigger role
 \[v_{i,t,m} = \sum_{\tau=t-d+1}^{t} x_{i,\tau,m} \exp\{-\omega_m(t - \tau)\} \]
 • (B) neighboring outages (e.g., fault propagation, cascading outages)
 • The outage rate at location i in time t is:
 \[\lambda_{it} = \gamma_i \mu(v_{it}; \varphi) + \sum_{t'<t} \sum_{(i,j) \in E} g(i,j,t,t') \]
 Direct cumulative weather impacts Indirect impacts from neighboring outages
Results: outage prediction

Accurate in-sample estimation, which suggests model can explain data well.

City-wise in-sample estimation

Dotted lines are actual outages; solid lines are predicted by our model
Results: outage propagations

- The learned spatial parameters indicate that the outages at a certain number of “critical” locations are likely to “cause” outages at other locations (see figures below).
- The causality might be: outage propagations, relative locations in grid topology or terrain, etc.
- It might suggest that, improving the resilience at these “critical” locations might further reduce the outages at other locations.

The map shows the spatial propagation of power outages among geographical locations during extreme weather.

- An edge between two locations indicates the power outages occurred in one location (light red) are resulted by the other (dark red).
- Edge width and color depth represent the number of customer power outages at the target attributed to the source.
- The size of dots represents the total number of customers of the corresponding geographical location.
Results: resilience characterization

- Our model quantifies the classic resilience curve
 - Service degradation stage:
 - Grid can absorb weather impacts up to a certain level
 - Service recovery stage
 - Outage numbers will reduce as system restoration starts

<table>
<thead>
<tr>
<th>Resilience curve</th>
<th>Our model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid capability in absorbing weather impacts</td>
<td>• Use accumulative weather force as inputs
• Parameters modeling weather force accumulation length
• Stochastic model characteristics</td>
</tr>
<tr>
<td>Service restoration stage</td>
<td>• Two types of parameters control the decay rate of outages, which are essentially the service restoration rate.</td>
</tr>
</tbody>
</table>
By adjusting model parameters, we can reduce the outage numbers produced by the model. Does this suggest some strategies for enhancing system resilience?

Reduce interdependence among locations: reduce negative impacts from neighboring locations, which, in reality, might mean hardening the electric connection between two locations. Figures on the left suggest that, for NC&SC, reducing locational interdependence among just a few locations can achieve significant reduction on outages; but the benefits diminish quickly. For GA to achieve a similar level of outage reduction, we need to reduce interdependence among a large number of locations and by a large amount.

Reduce vulnerability at a location: change parameter values at a location that reflect its capability of absorbing weather impacts. The red graphs indicate that, by just enhancing the few top vulnerable locations in NC&SC, the outages can be significantly reduced. However, this is not the case for MA and GA. These experiments suggest that, for different regions, there are different resilience enhancement strategies that work best for each region.
Argonne’s Wildfire Team

Grid Program Lead:
Mark Petri

Energy Systems (ES) Division:
Feng Qiu, Manager, Advanced Grid Modeling, Optimization and Analytics
Daniel Zuniga, Co-Op Technical – PhD
Rui Yao, Energy Systems Scientist
Alinson Xavier, Computational Scientist
Shijia Zhao, Postdoctoral Appointee
Alyssa Kody, Argonne Scholar
Dongbo Zhao, Principal Energy Systems Scientist
Tianqi Hong, Energy System Scientist

Georgia Institute of Technology:
Yao Xie, Associate Professor, School of Industrial and Systems Engineering
Chen Xu, PhD Student, School of Industrial and Systems Engineering
Shixiang Zhu, PhD Student, School of Industrial and Systems Engineering
The work is supported by
Argonne Laboratory Directed Research and Development (LDRD) and
Advanced Grid Modeling Program (AGM) under DOE Office of Electricity

The advisory support from California’s electricity utility, Southern California Edison (SCE), is acknowledged and appreciated.
Feng Qiu,
Manager, Advanced Grid Modeling, Optimization, and Analytics, Argonne National Laboratory

Email: fqiu@anl.gov
Operations and Planning for Wildfire Risk Mitigation

Feng Qiu, Manager, Advanced Grid Modeling, Optimization and Analytics, Argonne National Laboratory
Contributing Factors: Wildfire Ignitions by Power Systems

• Three factors required for a wildfire ignition by power system infrastructure

- FUEL
 • Spark from power system infrastructure caused by:
 • Area filled with dried out or dead vegetation

- WEATHER
 • Wind Speed
 • Wind Gust
 • Temperature
 • Humidity
 • Total/Rate Precipitation

- IGNITION
 • Equipment failure
 • Contact by
 • Vegetation
 • Animal
 • Other

Fire Incident Reports

Fire and Drought Indexes

Static and Dynamic Power System Modeling
Capability Summary

Objective:
• Incorporate wildfire risk understanding in power systems operations and planning to
 • mitigate risks of causing fires and
 • reduce interruptions of service

Capabilities:
• Operation Stage
 • Topology control/re-routing power to avoid high-fire-risk areas
 • Demand response to reduce loads
• Planning Stage
 • Transmission expansion planning considering long-term wildfire threat
 • Networked microgrids to reduce outages during power shutoff
• Disaster Response
 • Grid services restoration after fires or other disasters

Potential Users:
• Utilities, research communities
Wildfire Mitigation Via Optimal Transmission De-Energizing

Decision-Support Wildfire Mitigation Tool

- Assist in optimally dispatching PSPS

- **Input:** Wildfire risk associated with each transmission line

- **Output:** Set of lines and buses to de-energize to reduce the probability of a power-systems-ignited wildfire while minimizing load shedding

- Developed novel anti-islanding scheme, method to enforce N-1 security

CA-NV-AZ RTS-96 Test Case
Demand Response for Resilience

• Integrate demand response into restoration and emergent energy management
 • Further extend island operation duration
 • Applicable for buildings and residential homes
 • Powered by two-level management framework
• Real-time building-level management is verified
 • Facility for Low Energy eXperiments (FLEXLAB) at LBNL
 • Stone edge farm microgrid in Sonoma, California

Tested at FLEXLAB and Stone edge farm microgrid
Grid Design and System Hardening

Stochastic Expansion and Switching Planning for PSPS [6]

- Transmission and generation expansion (TGEP)
- Optimal power flow (OPF)
- Transmission line hardening: targeted undergrounding
- Transmission line switching
- Weather station information
- Index: KBDI
- Satellite vegetation images

Cost/Benefit Analysis

<table>
<thead>
<tr>
<th>Planning budget (US$ million)</th>
<th>Hardening budget (US$ million)</th>
<th>Transmission lines* (km)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>0</td>
<td>169</td>
<td>37 %</td>
</tr>
<tr>
<td>600</td>
<td>38</td>
<td>118</td>
<td>26 %</td>
</tr>
<tr>
<td>600</td>
<td>76</td>
<td>68</td>
<td>15 %</td>
</tr>
<tr>
<td>600</td>
<td>127</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td>400</td>
<td>0</td>
<td>169</td>
<td>37 %</td>
</tr>
<tr>
<td>400</td>
<td>38</td>
<td>118</td>
<td>26 %</td>
</tr>
<tr>
<td>400</td>
<td>76</td>
<td>68</td>
<td>15 %</td>
</tr>
<tr>
<td>400</td>
<td>127</td>
<td>0</td>
<td>0 %</td>
</tr>
</tbody>
</table>

*Powered transmission lines with wildfire ignition risk after line switching

High-fire-threat identified locations: Mexico’s most wildfire affected regions

- Optimization model
 - Large-scale MILO model
 - **Stochastic approach**
 - High performance computer (HPC)

Planning Stage - Grid Design and System Hardening

Grid Topology Improvements to Mitigate or Reduce Public Safety Power Shutoff (PSPS) Events

Pacific Gas and Electric (PG&E) [4]:
- 6 temporary microgrids (3 via pre-installed interconnection hubs) for PSPS events
- 62 substations operationally ready to leverage temporary generation during PSPS events

<table>
<thead>
<tr>
<th>PG&E Targets</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporary Distribution Microgrid</td>
<td>5 additional microgrids</td>
<td>7 additional microgrids</td>
</tr>
<tr>
<td>Substation Distribution Microgrid</td>
<td>8 microgrids</td>
<td>8 microgrids</td>
</tr>
</tbody>
</table>

Southern California Edison (SCE) [5]:
- In early 2020, a Request for Proposal (RFP) was issued unsuccessfully for six microgrid. Further research/analysis is required.
- Over the next three years (2021-2023) SCE aims for the substantial completion of a microgrid site.

Key innovation:
- Dynamic (networked) microgrids when disconnected from main grid
- Use mobile generator to supply local demand
- Co-optimized repair truck routing for distribution system restoration
- Optimized vegetation management for fire ignition risk reduction
Networked Microgrids

- Networked Microgrids
 - Physically-connected for exchanging power;
 - Functionally-networked for coordination;
- Significantly extend island operation duration
- Successfully demonstrated
 - Bronzeville-IIT “microgrid cluster”
- ANL is leading the efforts to demonstrate on IIT campus with multiple building microgrids

Field test on IIT campus

Networked Microgrids w/ Dynamic Boundary

- **Static Microgrids vs. Dynamic Microgrids**
 - A distribution grid can be automatically divided into several autonomous microgrids surrounding local energy resources in response to power outages in the system. The configuration of these microgrids can be changed dynamically.

<table>
<thead>
<tr>
<th>Static MGs</th>
<th>Dynamic MGs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static electric boundaries and connection point with external system</td>
<td>Dynamic electric boundaries and dynamic point of interconnection with external system</td>
</tr>
<tr>
<td>Energy resources are managed in a static group</td>
<td>Energy resources need to be grouped dynamically</td>
</tr>
<tr>
<td>Operates as a single entity</td>
<td>Coordination operation is required</td>
</tr>
</tbody>
</table>
Distribution Restoration

- Integrated restoration framework developed by ANL
 - Solar + Storage
 - Mobile storage
 - Crew dispatch
- Address practical issues (e.g., cold load pick-up, switching sequence, large-scale, repair and maintenance)
- Powered by comprehensive modeling and optimization techniques

Integrate flexible operational concepts (e.g., DER, microgrid, mobile storage) with practical constraints (e.g., CLPU, switching, repair)
Argonne’s Wildfire Team

Grid Program Lead:

Mark Petri

Energy Systems (ES) Division:

Feng Qiu, Manager, Advanced Grid Modeling, Optimization and Analytics
Dongbo Zhao, Principal Energy Systems Scientist
Tianqi Hong, Energy System Scientist
Rui Yao, Energy Systems Scientist
Alinson Xavier, Computational Scientist
Shijia Zhao, Postdoctoral Appointee
Alyssa Kody, Argonne Scholar
Daniel Zuniga, Co-Op Technical – PhD
Bo Chen, Energy System Scientist
Shijia Zhao, Research Staff
Most of these works are supported by

Argonne Laboratory Directed Research and Development (LDRD),
Advanced Grid Modeling (AGM) under DOE Office of Electricity,
Solar Energy Technology Office (SETO) under DOE EERE,
Advanced Research Projects Agency–Energy (ARPA-e),
Grid Modernization Lab Consortium (GMLC)
Feng Qiu,
Manager, Advanced Grid Modeling, Optimization, and Analytics, Argonne National Laboratory

Email: fqiu@anl.gov
Geospatial Analysis Tool Kit for Regional Climate Datasets (GATOR)

James Kuiper • Environmental Science Division

April 22, 2021
What does GATOR do?

- GATOR* computes climate statistics from Argonne climate modeling results, and outputs mapping layers

- Input data are daily values for:
 - Heat index,
 - Precipitation,
 - Relative humidity,
 - Solar radiance,
 - Temperature (maximum and minimum),
 - Wind chill,
 - Wind speed, and
 - Keetch-Byram Drought Index (KBDI)

spanning three 10-year periods:
- Mid-century (2045 – 2054), and
- End-of-century (2085 – 2094)

for North America at a 12km resolution

- The GATOR data repository was recently updated to include KBDI data, and the code was updated to include it (GATOR-FIRE)

What is the Keetch-Byram Drought Index (KBDI)?

- KBDI* is an index used to describe wildfire potential
- Calculated using daily maximum temperature, daily precipitation, and annual accumulated precipitation
- Values range from 0 (low wildfire potential) to 800 (extreme drought and unpredictable wildfire behavior)
- Used by the U.S. Forest Service, Texas Forest Service, U.S. Army, and Canadian Forest Service for fire management and planning

What is the Keetch-Byram Drought Index (KBDI)?

- Computed KBDI for most of North America from observed historical data, and modeled historical and projected future data1,2
- KBDI performs best in regions less sensitive to wind effects, and with sufficient fuel on the ground
- Many other wildfire risk indices exist for different regions/environments, and Argonne will be adding more of them

Example KBDI statistics computed by GATOR-FIRE

- KBDI from observed historical data
 - Monthly, and annual average KBDI
 - 95th percentile (value 95% of values are below)

- KDBI from climate model results
 - 95th percentile for historical period
 - Number of days over 95th percentile for mid-century, and end-of-century periods

- At right, 95th percentile KBDI for 2002 from climate model results
Example KBDI statistics computed by GATOR-FIRE

95th Percentile KBDI with wildfire locations (2000)

Number of days > historic 95th percentile
Example KBDI statistics computed by GATOR-FIRE

Average observed KBDI with wildfire locations (2004)
KBDI statistics are being added to the Energy Zones Mapping Tool

- Publicly available web-based mapping tool
- Large geospatial data library (>330 layers)
 - Energy infrastructure
 - Energy resource
 - Siting factors relevant to energy analysis
 - Reference/background
- Suitability modeling and analysis for:
 - Power generation (37 power plant models)
 - Energy corridor paths (3 corridor models)
- KBDI statistics (to be added in near future):
 - Data downloadable
 - Visualize wildfire risk with any mapping layer
 - Include wildfire risk as a siting factor when modeling suitability of potential projects
Research staff and funding

- Original climate modeling
 - Jiali Wang, Atmospheric and Earth Scientist
 - Rao Kotamarthi, Chief Scientist, Atmospheric Science and Climate Department Head
 - Funded by Strategic Environmental Research and Development Program (SERDP), and DoD

- Raw KBDI computations funded by DOE Science Undergraduate Laboratory Internship (SULI) Program
 - Emily Brown, Argonne SULI Intern, now at Berkeley University
 - Yan Feng, Principal Atmospheric and Climate Scientist
 - Jiali Wang

- GATOR and GATOR-FIRE
 - Jim Kuiper, Principal Geospatial Engineer
 - Funded by SERDP

- Energy Zones Mapping Tool (EZMT)
 - Jim Kuiper, EZMT Technical Coordinator, and many others
 - Funded by the U.S. Department of Energy, Office of Electricity
Geospatial Analysis Tool Kit for Regional Climate Datasets (GATOR)

James Kuiper • Argonne National Laboratory • jkuiper@anl.gov
National Preparedness Analytics Center · Modeling and Analytic Tools

Iain Hyde, Deputy Director, National Preparedness Analytics Center, Decision and Infrastructure Sciences Division

ihyde@anl.gov

April 22, 2021
OUR CAPABILITIES AND STAFF EXPERTISE
Fielding a Multi-disciplinary Team of Subject Matter Experts

Our Capabilities
- Decision science
- Modeling and simulation
- Geospatial analysis and data visualization
- Resilience analysis
- Preparedness
- Hazard mitigation
- Response
- Recovery
- Social and behavior systems
- Infrastructure sciences

Our People
- Emergency Managers
- Geospatial analysts
- Engineers
- Economists
- Social scientists
- Urban planners
- Public policy experts
- Operations researchers
- Intelligence analysts
CURRENT ANALYTIC TOOLS AND RESOURCES
RESILIENCE ANALYSIS AND PLANNING TOOL (RAPT)

www.fema.gov/rapt
VISUALIZE AND ANALYZE DATA ABOUT YOUR COMMUNITY

People and Community (22 indicator layers)

Infrastructure (21 infrastructure layers)

Hazards/Risk
Estimated annualized frequency, historic, real-time hazard layers

- RAPT allows users to stack multiple data layers to identify and address different areas of concern.
- Data available at the county or census tract level.
RAPT: HAZARD AND RISK LAYERS

- Historic Tornado and Hurricanes
- National Flood Hazard Zones
- Real-Time Weather Watches and Warnings

- Estimated Annualized Frequency (from National Risk Index)

<table>
<thead>
<tr>
<th>Coastal Flooding</th>
<th>Landslide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold Wave</td>
<td>Lightning</td>
</tr>
<tr>
<td>Drought</td>
<td>Riverine Flooding</td>
</tr>
<tr>
<td>Earthquake</td>
<td>Strong Wind</td>
</tr>
<tr>
<td>Hail</td>
<td>Tornado</td>
</tr>
<tr>
<td>Heatwave</td>
<td>Wildfire</td>
</tr>
<tr>
<td>Hurricane</td>
<td>Winter Weather</td>
</tr>
<tr>
<td>Ice Storm</td>
<td></td>
</tr>
</tbody>
</table>

Historic Tornado Tracks
- Tornado Number (Count): 311,079
- Year: 2011
- Month: 4
- Day: 27
- Date: 2011-04-27
- Time: 16:42:00
- Time Zone: 3
- State: MS
- State FIPS: 28
- State Number: 81
- F-Scale: 4
- Injuries: 17
- Fatalities: 7
- Estimated Property Loss: 25,81
- Length in Miles: 122.04
- Width in Yards: 1,050

Wildfire
- 0 - 0.0013 | Events per Year
- 0.0013 - 0.0039
- 0.0039 - 0.0076
- 0.0076 - 0.0132
- 0.0132 - 0.0256
- Data Unavailable
RAPT: ADDRESSING WILDFIRE RISK

Hazard/Risk:
Wildfire (frequency event days/year); Incident Analysis Tool enables users to draw projected fire path.

Infrastructure:
Hospitals inside and outside potentially affected area.

Census Tract:
% of population age over 65.

DECISION SUPPORT EXAMPLES
- Priority hospital/nursing homes for evacuation support.
- Hospital locations outside of impact zone to re-direct patients.
- Planning and operations support to help evacuate people with disabilities.
COVID-19 MISSION ASSIGNMENT: RECOVERY DATA AND ASSESSMENT

- Provide data analytics support to 20+ federal agencies involved in COVID-19 recovery efforts.

- A key objective has been to collect and analyze data to identify near real-time socio-economic impacts.

- Analyses can provide insight into communities impacted by other types disasters.
 - Products used to support impact assessments from Western wildfires and Gulf Coast hurricanes during 2020.

- 2021 Focus: providing analytic resources to state, local, tribal, and territorial jurisdictions.
On May 10th, Argonne will publicly release a series of indices and other analytic resources to support ongoing COVID recovery decision making.

Users will be able to find these resources at www.anl.gov.

Forthcoming products include:

- **County Economic Impact Index**: Measures the estimated monthly change in county GDP since the onset of the COVID-19.

- **State and Local Government Revenue Vulnerability Indices**: Measures the estimated monthly change in state and local government revenue since the onset of COVID-19.

- **Housing Stability Index**: Measures the near real-time change in housing stability for renters and owners since the onset of COVID-19.

- **Internet Access Index**: Measures household access to high-speed internet based on the availability of broadband from Internet Service Providers, household subscription rates, and access to internet-enabled devices.
ONGOING RESEARCH AND DEVELOPMENT
ELECTRICITY SUBSECTOR RISK CHARACTERIZATION

DOE’s Infrastructure Security and Energy Restoration (ISER) Division asked ANL to model the risks to the electric system posed by six (6) natural hazards. The analysis leverages ANL’s advanced climate and electric power flow models to determine the risk, extent, and duration of outages.

- ANL will estimate the exceedance probability of electric outages of a certain magnitude caused by wildfires, hurricanes, earthquakes, tornados, ice storms, and severe thunderstorms.
 - Historical data will be supplemented by data from ANL’s advanced climate models, including a novel hurricane model designed to simulate offshore storm formation, storm paths, and landfall.
 - ANL will examine risks under both current conditions and RCP 4.5 & 8.5 scenarios.

- Hazard scenarios will be run through ANL’s EPfast and EGRIP electric system models to assess impacts to the electric system.

- ANL will report estimates for demand loss (MW), unserved energy (MWh), customers affected (#), equipment damage ($), and restoration time (hours).
NEW LABORATORY-DIRECTED RESEARCH INITIATIVE.

Planned Approach:

- **Phase 1 (2021)**
 - Develop an event generation and characteristics methodology for hurricanes, including trajectory, intensity, duration.
 - Overlay event characteristics with existing infrastructure and population data.
 - Incorporate methodology to model estimated economic impacts to the affected region.

- **Phase 2 (2022)**
 - Develop methodology to produce downscaled, sub-county impact estimates.
 - Incorporate high-resolution climate change data.
 - Develop event generation and characteristics methodology for additional hazards, including riverine flooding and wildfire.

Intended use cases:

- Support critical decision-making during response and recovery.
- Inform long-term mitigation and resilience investments.
THANK YOU

Iain Hyde • Argonne National Laboratory • ihyde@anl.gov
SUMMIT: Standard Unified Modeling, Mapping, and Integration Toolkit

Overview and Wildfire Applications

Russell Gayle, Sandia National Laboratories
SUMMIT: Problem Statement

Objective:
Provide USG (FEMA, CWMD, CISA, etc.) a scalable M&S platform to efficiently produce data for multiple scenarios or archive, share, and reuse any data utilized in plan creation for future planning, comparative analysis or during emergency response operations.

Current Gaps
- **Integration**: Currently disparate systems prohibits complex, cascading analysis, sharing, and collaboration
- **Uncertainty**: Planning only done for single scenarios and response does not typically convey uncertainty
- **Reuse**: Data from planning not archived and used during response or subsequent planning

Desired Outcome
- Enhanced national preparedness (THIRA) through robust multi-scenario planning capability
- Dramatically shorten the time to respond to disaster requests for informations
Modeling and Simulation Situational Awareness

Enabling PPD-8 aim for an integrated, all-of-Nation, capabilities-based approach to preparedness [and response]
The SUMMIT Process

Discover ➔ Configure ➔ Execute ➔ Analyze
SUMMIT Engagement:
California Exercise and Simulation Center (2016)

• Highlights and Impacts:
 • Supported “Decisions Matter” exercise series
 • Sacramento MetroFire awarded $50K by State Homeland Security Grant Program (SHSGP) to develop SUMMIT templates for CA
 • New business model for sustainment: state/regions invests
 • CESC team is a strong SUMMIT advocate

• Risks:
 • DHS license for technology transfer still pending
 • Need to implement new business model (pay-per-use, certifications, etc.) to sustain SUMMIT

• Outlook for the future…
 • Harden 3 templates (Cl₂ Tanker, Wildfire, crude oil?)
 • For single runs and batch analysis
 • Work supported in part by SHSGP (Jan-Sep 2016)
 • Create exercise guides for the use of each template
 • Seek additional CA support for sustainment (SacOES, CalFire)
Wildfire Scenario Template: Overview

Hazard: Wildfire
Impacts:
- Population
- Infrastructure
- Economic
Planning/Response:
- Evacuation
Wildfire Scenario Template: Model Selection

Study Name

Click each navigation tab to configure each model
OR
Click each icon
Wildfire Scenario Template: Fire Configuration

Set weather conditions

Do you have your own Farsite weather data? Yes / No

Enter the values for the following fields. Model will assume that the wind stays constant during the simulation period.

Temperature (F): Min 49 Max 98
Temperature Hour: Min 600 Max 1500
Humidity (%): Max 84 Min 12
Precipitation (mm): 0 (0 inches)
(Optional) Rain Start Hour: 0900
(Optional) Rain Stop Hour: 1100

Coordinates
(not set)

Click on map to set ignition point
Select the infrastructure layers to include in the analysis. It is recommended to check “Select All”.
Wildfire Scenario Template: Wildfire Results

Check Fire Perimeter Time checkbox to see fire contours.

Slider bar to see size/contour of fire at a given time.
Click Affected Infrastructure checkbox to view affected infrastructure.
Thank You!

Any Questions?
Web-Based Geospatial Analytics Application Frameworks and Demos

Leo Bynum, R&D S&E, Computer Science, Sandia National Laboratories
Phone: (505) 284-3702
E-mail: lbynum@sandia.gov
Using and Valuing Ecosystem / Physical Science and Earth Observations in Wildfire Management Decisions

Collaborators

USGS: Fort Collins Science Center, National Land Imaging Program, National Geologic Mapping Program, Northwest Science Center – Corvallis, U.S. Forest Service: Pacific Southwest Region and Geotechnical Applications Center
Assessing wildfire risk management tradeoffs on public lands and in nearby communities

- **Why**: Measure wildfire benefits and risks
- **What**: Create analytical tool for benefits vs. risks
- **How**: Apply Bayesian network (probabilistic causal model)
 - Utilize remote sensing: Landsat and MTBS transitions
 - Estimate probability of habitat suitability: spotted owl and black bear
 - Forecast post-fire impact of natural hazards
 - Debris flows and floods
 - Short and long run impacts to water quality from erosion and sedimentation
 - Estimate exceedance probabilities of critical resources losses
 - Estimate economic benefits of forest mitigation or adaptation activities
Study region, California spotted owl habitat, and probability of habitat suitability

Case study: USDA Sierra, Stanislaus Forests and USDI Yosemite National Park and related BLM lands.

California spotted owl classification (CDFW)

Inputs to Land Use Information Structure (1km² map grid)
Regional scale: Landsat & in situ Data
- Vegetation Class
- Forest Height
- Topography
- CDFW Habitat Suitability
Wildfire Data
- Flame Length Probability
- MTBS Burn Severity Class
Local scale: USFS & County Roads
USFS Buildings
Impacts of the Rim fire on CA spotted owl habitat

Forest Resource Distribution and Redistribution

Two measures to risk analysis:
1. Economic inequality – measurement of the distribution of economic benefits
2. Biological inequality – measurement of the distribution of habitat suitability
3. Impact of redistribution

Spatial Lorenz curves for California spotted owl habitat suitability at a WTP of $5/km²
Analysis: Cost effectiveness of a hypothetical prescribed burn program

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
<th>Owl Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 protected cells</td>
<td>$1,547,208.00</td>
<td>$1,127,992.00</td>
</tr>
</tbody>
</table>

Wildfire creates uniform habitat for spotted owls:
+ in economic value
- in ecological habitat suitability

Wildfire impacts on economic value for black bear habitat are currently inestimable:
+ positive externality impact from owl habitat protection on black bear habitat?
Legends: land use, infrastructure and post fire expected sediment yield in the Rim fire impacted region
Integrated Model: Mitigation vs. Adaptation

- Resource tradeoffs
 - Natural resources
 - Engineered infrastructure
 - Decision making priorities subject to budget/time constraints
- Mitigation: Pre-fire treatments
 - Bear and owl habitat
 - Natural / cultural resources
- Adaptation: Post-fire treatments
 - Infrastructure impacts (Kineros2/AGWA)
 - Community resilience
- Value of information
 - Remote sensing
 - Updated science (e.g., burn severity maps using LANDFIRE)
Thank You

Richard Bernknopf rbern@unm.edu
Vince Tidwell vctidwe@sandia.gov
Craig Broadbent broadbentcr@byui.edu
Grid Resilience and Intelligence Platform

PI: Alyona Ivanova Teyber
aivanova@slac.stanford.edu
GRIP Overview

✓ Using machine learning and data-driven approaches to
 o Anticipate extreme events;
 o Absorb using controls for DERs and flexible resources;
 o Recover by managing DERs in the case of limited communication to reduce recovery time.

✓ High level impacts
 o Developed a platform and metrics that capture the resilience of grid assets
 o Anticipate multi-time scale grid vulnerabilities, for example:
 ■ Trigger asset replacement on multi-month scale
 ■ Help mitigate the need for PSPS events on multi-week scale by minimizing the customer interruptions
 ■ Better control of day-of events
 o IT/OT system integration
 ■ Reduce impacts of cyber events in the event of communication loss
 o Sophisticated User Interface

✓ Technical Team

✓ Technical Advisory Group
Wildfire prevention with GRIP

Anticipation
- Pole Failure Modeling
- Vegetation line contact analysis using GIS data
- PSPS analytics

Absorption
- Fault Isolation
- Virtual Islanding Formation
- Power Balancing

Recovery
- Fast Anomaly Detection using ML
- ML image recognition for poles
- Transmission blackstart
Anticipation

• **Vulnerability metric**
 • Captures the impact of wind pressure on face of pole and proximity of vegetation on the overhead lines
 • Defines a pole vulnerability metric
 • Models the electrical fault propagation and pole restoration
 • Uses weather data to drive the model
 • Uses 3m GIS data to capture vegetation proximity to lines
 • Supports arbitrary vulnerability simulations
 • Accounts for pole degradation
 • Capable of large equipment and model library import
 • Integrates with CYME

• **PSPS analytics**
 • Determines the optimal power-shut off for short term decisions in wildfire prevention
 • Objective: maximize amount of power while minimizing risk of fire ignition
 • Selective de-energization of system components
Absorption - fire use-case

- Motivation: avoid loss of power to downstream portions of the grid
- Allows utilities to better understand the transition to a system where distribution circuits can continue to serve load post loss of bulk grid
- Algorithm identifies the fault and reconfigures the system into “virtual islands” while balancing maximum amount of load using local DERs
- Uses the slack bus, DERs and flexible loads, such as water heaters and HVACs to maintain maximum load
Absorption

- Motivation: avoid loss of power to downstream portions of the grid
- Allows utilities to better understand the transition to a system where distribution circuits can continue to serve load post loss of bulk grid
- Algorithm identifies the fault and reconfigures the system into “virtual islands” while balancing maximum amount of load using local DERs
- Uses the slack bus, DERs and flexible loads, such as water heaters and HVACs to maintain maximum load
Absorption

- Motivation: avoid loss of power to downstream portions of the grid
- Allows utilities to better understand the transition to a system where distribution circuits can continue to serve load post loss of bulk grid
- Algorithm identifies the fault and reconfigures the system into “virtual islands” while balancing maximum amount of load using local DERs
- Uses the slack bus, DERs and flexible loads, such as water heaters and HVACs to maintain maximum load
Absorption

- Large-scale test and validation:
 - Vermont Electric Co-op distribution feeder
 - Deployed 150 water heaters with controls
 - Results showed the unserved energy reduction from 100% to 10% using GRIP
Recovery

- Anomaly Detection using ML
 - Detects equipment failure and non-technical losses from meter data streams
 - Achieves near perfect identification of theft and hardware failures from same meter test/training data
- Fast anomaly detection
 - Detects equipment failure (residential, transformer) from meter data streams
 - Sub-hour train/test performance to enable real-time detection
- ML image recognition for poles
 - Neural networks for image recognition from video data
- Transmission black start
 - Sequences to de-energize generators and opening/closing switches to restore power in transmission network
 - Visualization of the sequence using power flow
Deployment and Integration with Utility Tools

- **OpenFIDO - Open Framework for Integrated Data Operations**
 - Integrates data converters to re-format model compatible with GRIP
 - CYME converter
 - Equipment libraries
 - Supports on-premise and cloud deployment
- **HiPAS GridLAB-D - High Performance Agent-based Solver**
 - Power flow solver for simulation and modeling of electrical networks
- **NRECA OMF.coop**
 - Analytics hosted on the platform with users from over 176 utilities, vendors, and universities
- **California IOU Deployment - in progress**
- **150 field deployed thermostatically controlled devices with GRIP absorption algorithm**
We invite you to collaborate and participate in testing our tools.

Contact information:

Alyona Teyber
aivanova@slac.stanford.edu

www.grip.energy
Grid Resilience and Intelligence Platform

Alyona Teyber on behalf of SLAC National Accelerator Laboratory
Questions? Contact our Speakers:

Edgar Portante
Argonne National Laboratory
ecportante@anl.gov

Feng Qiu
Argonne National Laboratory
fqiu@anl.gov

Jim Kuiper
Argonne National Laboratory
jkuirper@anl.gov

Iain Hyde
Argonne National Laboratory
ihyde@anl.gov

Russell Gayle
Sandia National Laboratories
rgayle@sandia.gov

Leo Bynum
Sandia National Laboratories
lbynum@sandia.gov

Robert Bernknopf
Sandia National Laboratories
rberm@unm.edu

Alyona Teyber
SLAC National Accelerator Laboratory
aivanova@slac.stanford.edu

Stewart Cedres
Office of Electricity
stewart.cedres@hq.doe.gov
Thank You

Our Next Webinar:
Modeling & Analytical Tools | Post Fire Analysis
April 29, 2-4 PM ET
https://www.energy.gov/oe/wildfire-mitigation-webinar-series

Want to Connect?
Contact Stewart Cedres at stewart.cedres@hq.doe.gov