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BASIC PURPOSE OF THE PROBABILISTIC WILDFIRE THREAT MODEL
(Model based on the Monte Carlo Technique)

• Provide stakeholders the ability to assess the risk posed by 
wildfires to regional or local electric infrastructure.

- Given a high-level description of the scenario, evaluate the possible 
occurrence of wildfire in the region of interest .

- Generate fragility curves (damage functions) for use to determine damage 
levels of electric assets given the fire intensity and/or wildfire zone 
perimeters/coverage.

- Generate a list of possible at-risk electric assets that will serve as input to 
the probabilistic grid simulator (Enhanced EPfast ).

- Assess impacts (using EPfast) of the de-energization of the affected electric 
assets on the overall grid performance in a probabilistic fashion using the 
Monte Carlo technique. Measure impacts in terms of expected load loss, 
power flow re-routing, and economic dispatch cost (production cost).



MODELING APPROACH AND ARCHITECTURE



MODEL INPUTS: ELECTRIC INFRASRUCTURE, FRAGILITY 
CURVES, AND FIRE PROBABILITY HEAT MAPS 
PROABILITYARCHITECTURE
 FIRE IGNITION PROBABILITY HEAT MAPS

- UCLA Merced Index
- KBDI Drought indices
- FDI Fire Danger Index

 FRAGILITY CURVES
- probabilistic damage function
- binary damage function 

 ELECTRIC INFRASTRUCTURE LAYER
- regional
- local

 HISTORICAL WILDFIRE PROGRESSION MAPS
- empirical wildfire patterns
- empirical wildfire intensities.



MODEL OUTPUT: FIVE PROBABILISTIC GRAPHS
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MODEL OUTPUT:  SEVEN RELIABILITY INDICES

 Allow comparison 
of system 
performance before 
and during event of 
wildfire.

 Expected load loss 
can be used to 
assess cost of 
unserved energy.



MODEL OUTPUT:  DATA SHEET

 Contains list of the 
2,000 cases 
simulated by the 
model

 Each case has an 
assigned seed 
number to allow for 
recovery/extraction 
of specific cases of 
interest.

 Extracted case can 
be studies in more 
detail.



SUMMARY AND CONCLUSIONS

A.  The Probabilistic Threat Model can Potentially have following capabilities:
 assess risk in terms MW loss from a variety of curves and tables.
 compare system performance pre-event and during event  via reliability indices.
 indicate alternate routing paths if there is no load loss by extracting no-load loss cases of 

interest from out of 2,000 simulated cases.
 quantify increase in production cost due to re-routing or changes in generation dispatch.

B.  Areas Needing Further Research or Effort:
 collection or development of fire probability heat maps for more regions of interest.
 development of wildfire fragility curves for electric assets. 
 use of high-speed computers for increased Monte Carlo iterations and for analysis of 

broader regions of interest in finer geographic resolutions.
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Capability Summary

Objectives:
• Better understand the contributing factors of wildfire caused by power delivery

• Better understand the dynamics of wildfire trend

• Predict wildfire incidents and outages

Capabilities:
• Wildfire and outage analytical tools with statistical methods, stochastic process models, and machine 

learning

Potential Users:
• Utilities (electricity, water, etc.) that do not own dedicated wildfire and outage tools 

• Research community 

• Policy makers, stakeholders, community developers, etc



Contributing Factors: Wildfire Ignitions by Power Systems

• Three factors required for a wildfire ignition by power system infrastructure

FUEL Spark from power system 
infrastructure caused by:

Area filled with dried out or dead 
vegetation

• Wind Speed
• Wind Gust
• Temperature
• Humidity
• Total/Rate Precipitation

• Equipment failure

• Contact by

• Vegetation

• Animal

• Other

Fire Incident Reports

Fire and Drought 
Indexes

Static and Dynamic Power 
System Modeling



Fire Danger Indices

Fire danger indices provide an estimation of the wildfire risk. We have developed the 
capability to determine the following commonly-used indices for a range of time scales, 
from near real-time to a week, to seasonal outlook, to the longer-term projection over the 
next decades at high spatial (4km and 12km) resolutions.

a) KBDI (Keetch-Byram Drought Index) [3,4]
• Applied by U.S. Forest Service (USFS), Texas Forest Service, U.S. Army

b) FPI (Fire Potential Index) [5,6]
• Applied by USFS, United States Geological Survey (USGS) 

• Proprietary versions of FPI are being used by power utilities (e.g., PG&E, SCE)
c) CFWI (Canadian Fire Weather Index) [6,7]

• Applied by the Canadian Forest Service and variations have been adopted by 
Australia, France, and Croatia.

• d) A machine-learning fire danger model is being developed

[3] Keetch J. J. and Byram G. M. (1968). A Drought Index for Forest Fire Control SE-38 U.S.D.A. For. Serv. Res. Pap
[4] Brown, E.K., J. Wang, and Yan Feng. 2021. U.S. wildfire potential: a historical view and future projection using high-resolution climate data. Environmental Research Letters. 
[5] Burgan R.E., Klaver R. W., and Klarer J.M. (1998). Fuel models and fire potential from satellite and surface observations. International Journal of Wildland Fire, 8(3), 159 – 170
[6] Yu, G., J Wang, Y. Feng, E. Brown, and D. Wright. 2021. The performance of fire danger indices and its utility in predicting future wildfire danger over the conterminous United 
States. To be submitted
[7]Turner, J.A. and Lawson, B.D. (1978). Weather in the Canadian Forest Fire Danger Rating System. A user guide to national standards and practices. Environment Canada, 
Pacific Forest Research Centre, Victoria, BC



Methodologies

• Statistics Analysis
• Ordered logistic regression
• Association rules
• Decision tree

• Hot Spot
• Emergent hot spot analysis

• Stochastic Process 
• Spatial-temporal point process



Data Sets

4. California Public Utilities Commission (CPUC), available at https://www.cpuc.ca.gov/wildfires/
5. NASA Land Data Assimilation System (NLDAS), available at https://ldas.gsfc.nasa.gov/nldas/v2/forcing
6. United States Geological Survey (USGS), available at https://firedanger.cr.usgs.gov/apps/staticmaps
7. LandFire (LF), available at https://www.landfire.gov/version_comparison.php
8. Environmental Protection Agency (EPA), available at https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states
9. California Public Utilities Commission (CPUC), available at https://ia.cpuc.ca.gov/firemap/

• PG&E, SCE, and SDG&E’s Fire Incident Data 2014 - 20194

• contact from object, 
• date,
• equipment failure,
• geographic location, 

• material of origin,
• outage,
• size (categorical),
• time, and  

• utility name,
• voltage, 
• among other variables

• NLDAS Primary Forcing Data (Hourly)5

• potential evaporation,
• pressure,
• specific humidity,

• temperature,
• total precipitation,
• relative humidity,

• wind U component, 
• wind V component, and
• wind speed.

• USGS Fire Forecast6
• fire potential index (FPI) and
• large fire probability (LFP) 

• LandFire Existing Vegetation Type (EVT) and Height (EVH)7

• fuel class name,
• physiognomy,
• physiognomic order,

• physiognomic class, and
• physiognomic subclass.

• Environmental Protection Agency8
• Level III ecoregion and
• Level IV ecoregion

• CPUC Fire Threat Map9
• Tier 2 – Elevated and
• Tier 3 - Extreme

Data Selection

https://www.cpuc.ca.gov/wildfires/
https://ldas.gsfc.nasa.gov/nldas/v2/forcing
https://firedanger.cr.usgs.gov/apps/staticmaps
https://www.landfire.gov/version_comparison.php
https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states


Statistical Analysis

• Ordered Logistic Regression Fire Size

6 Features
Weather:
• potential evaporation
• pressure
• specific humidity
• temperature
• total precipitation
• wind speed

8 Features
Weather:
• potential evaporation
• pressure
• specific humidity
• temperature
• total precipitation
• wind speed

Fire forecast:
• fire potential index
• large fire probability

Not statistically 
significant

Statistically 
significant

Statistically 
significant

Decrease Risk
• Developed-Low Intensity
• Developed-Medium Intensity
• Developed-High Intensity
• Developed-Roads

Increase Risk
• Exotic Herbaceous
• Exotic Tree-shrub
• Grassland

9 Features
Weather:
• potential evaporation
• pressure
• specific humidity
• temperature
• total precipitation
• wind speed

Fire forecast:
• fire potential index
• large fire probability

Vegetation:
• physiognomyStatistically significant 

features

NDVI

Fuel Model Map

Tmax, RH

FPI Live and dead fuel

Relative greenness

10-h dead fuel moisture

Results may be further improved by including power delivery information, e.g., power flow.



9 Features
Weather:
• potential evaporation
• pressure
• specific humidity
• temperature
• total precipitation
• wind speed

Fire forecast:
• fire potential index
• large fire probability

Vegetation:
• physiognomy

Statistical Analysis

• Association rules

Fire Size    Support   Confidence  Count

Developed-Roads                                                    < 3 meters      7%            24%             160 

No precipitation, Wind speed [2.47,4.59)                 < 0.25 Acres   23%          54%            511

No precipitation, Temperature [14.8,21.7)  < 0.25 Acres   19%          55%            426

No precipitation, FPI [52.6,72)                                < 0.25 Acres   17%          57%            375

No Precipitation, LFP [27.8,37]                               < 10 Acres      8%             24%            187 

FPI [72,99]                                                              < 10 Acres      7%             24%            171 

Definition
Support: How often a given rule appears in the data set.

Confidence: The amount of times a given rule appears, turns out to be true.

Count: Number of times the rule appears in the data set.

Examples of identified association rules

Fire Size

• Identifies frequently occurring patterns on a dataset.

• Makes predictions from subsets of co-occurring past events.



Statistical Analysis

• Decision Trees
9 Features
Weather:
• potential evaporation
• pressure
• specific humidity
• temperature
• total precipitation
• wind speed

Fire forecast:
• fire potential index
• large fire probability

Vegetation:
• physiognomy

Model Accuracy
70%

Size                              Probability
===========================
0. Structure Only                0
1. 1 meter - 3 meters          0.03
2. 3 meters - 0.25 Acres     0.86
3. 0.26 - 9.9 Acres              0.07
4. 10 - 99.9 Acres               0
5. 100 - 299.9 Acres           0
6. 300 - 999.9 Acres           0.03
7. 1000 - 4999.9 Acres       0
8. > 5000 Acres                  0

Size                              Probability
==========================
=
0. Structure Only                0.01
1. 1 meter - 3 meters          0.21
2. 3 meters - 0.25 Acres     0.50
3. 0.26 - 9.9 Acres              0.25
4. 10 - 99.9 Acres               0.02
5. 100 - 299.9 Acres           0
6. 300 - 999.9 Acres           0
7. 1000 - 4999.9 Acres       0
8. > 5000 Acres                  0

Fire Size



Identifies trends in the clustering of point densities (counts) in a space-time cube. 

New hot spots / cold spots – location that have never had an increasing

/ decreasing trend before

Sporadic hot spots / cold spots – location that is on and off an 

increasing / decreasing trend

Oscillating hot spots / cold spots – location that shows an increasing / 

decreasing trend in the last time a decreasing / increasing trend a time 

before.

Emergent Hot Spot Analysis

Emergent Hot Spot Analysis of 
PG&E, SCE, and SDGE’s

2014-2019 Fire Incident Reports

/

/

/



Spatial-Temporal Point Process Modeling

2014 – 2019 Fire Incidents
By EcoRegion Lvl 4

2014 -2019 Fire Incidents
Interaction Map

Spatial-temporal point process (STPP) model:

• Models the conditional intensity, i.e., the probability of an event
occurring at time  and location  given history.

• It captures spatial-temporal correlation among events.

• Leverages available features (e.g., FPI, weather variables)

• Probabilistic generative model from which fire events can be simulated.



Power Outage Analysis and Prediction

• Near real-time outage data
• Collected from public websites since 2018
• At city/county/zip code resolution
• Refresh every 3-15 minutes

• Weather record/forecast data
• From NOAA 
• 100+ fields, including wind, temperature,…
• 3-km resolution
• Refresh every 15 minutes

• Studied regions
• Massachusetts
• Georgia (Georgia Power)
• North & South Carolinas (Duke)



Motivation: Multiple dimensions of grid resilience

• Grids in different regions are vulnerable to 
different weather variables. 

• Figures show how the outages develop with 
regard to accumulated wind force. 

• The jumps in blue lines indicate when large-
scale outages occur. The earlier the jump 
occurs, the less accumulated impacts the grid 
can absorb. 

• The three figures on the right suggests that, 
among MA, GA, and NC&SC,  

• GA grid can withstand more accumulated wind 
force. However, once 



Methodology

• A spatial-temporal model: consider both outage evolvement in time and 
interactions among geographic locations

• Assumptions
• # outages at a location: a multivariate non-homogeneous Poisson process 
• Outages at a location results from the combination of: 

• (A) direct weather cumulative impacts 
cumulative: weather in the past d days matters; recent weather plays a bigger role

• (B) neighboring outages (e.g., fault propagation, cascading outages)

• The outage rate at location i in time t is: 

25
Direct cumulative 
weather impacts

Indirect impacts from 
neighboring outages



Results: outage prediction

26 City-wise in-sample estimation

Accurate in-sample estimation, which suggests model can explain data well.

Dotted lines are 
actual outages; 
solid lines are 
predicted by 
our model



Results: outage propagations

The learned spatial parameters indicate that the outages at a certain number of “critical” locations are likely to “cause”
outages at other locations (see figures below).

The causality might be: outage propagations, relative locations in grid topology or terrain, etc.
 It might suggest that, improving the resilience at these ”critical” locations might further reduce the outages at other 

locations. 

The map shows the spatial propagation of power 
outages among geographical locations during 
extreme weather. 

 An edge between two locations indicates the 
power outages occurred in one location (light 
red) are resulted by the other (dark red). 

 Edge width and color depth represent the 
number of customer power outages at the 
target attributed to the source. 

 The size of dots represents the total number 
of customers of the corresponding 
geographical location.



Results: resilience characterization

• Our model quantifies the classic resilience curve 
• Service degradation stage: 

• Grid can absorb weather impacts up to a certain level 
• Service recovery stage

• Outage numbers will reduce as system restoration starts 

Resilience curve Our model

Grid capability in absorbing 
weather impacts

• Use accumulative weather force as inputs 
• Parameters modeling weather force accumulation 

length
• Stochastic model characteristics 

Service restoration stage • Two types of parameters control the decay rate of 
outages, which are essentially the service restoration 
rate. 



Results: Resilience Enhancement Suggestions

Reduce interdependence among locations: reduce negative 
impacts from neighboring locations, which, in reality, might 
mean hardening the electric connection between two 
locations. Figures on the left suggest that, for NC&SC, 
reducing locational interdependent among just few locations 
can achieve significant reduction on outages; but the 
benefits diminish quickly. For GA to achieve a similar level of 
outage reduction, we need to reduce interdependence 
among a large number of locations and by a large amount. 

Reduce vulnerability at a location: change parameter values 
at a location that reflect its capability of absorbing weather 
impacts. The red graphs indicate that, by just enhancing the 
few top vulnerable locations in NC&SC, the outages can be 
significantly reduced. However, this is not the case for MA 
and GA. These experiments suggest that, for different regions, 
there are different resilience enhancement strategies that 
work best for each region. 

By adjusting model parameters, we can reduce the outage numbers produced by the model. Does this suggest some strategies for 
enhancing system resilience? 
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Contributing Factors: Wildfire Ignitions by Power Systems

• Three factors required for a wildfire ignition by power system infrastructure

FUEL Spark from power system 
infrastructure caused by:

Area filled with dried out or dead 
vegetation

• Wind Speed
• Wind Gust
• Temperature
• Humidity
• Total/Rate Precipitation

• Equipment failure

• Contact by

• Vegetation

• Animal

• Other

Fire Incident Reports

Fire and Drought 
Indexes

Static and Dynamic Power 
System Modeling



Capability Summary

Objective:
• Incorporate wildfire risk understanding in power systems operations and planning to 

• mitigate risks of causing fires and 
• reduce interruptions of service

Capabilities:
• Operation Stage

• Topology control/re-routing power to avoid high-fire-risk areas
• Demand response to reduce loads

• Planning Stage
• Transmission expansion planning considering long-term wildfire threat
• Networked microgrids to reduce outages during power shutoff 

• Disaster Response
• Grid services restoration after fires or other disasters

Potential Users:
• Utilities, research communities 



Optimal Public Safety Power Shutoff

Decision-Support Wildfire Mitigation Tool

• Assist in optimally dispatching PSPS

• Input: Wildfire risk associated with each 

transmission line

• Output: Set of lines and buses to de-energize to 

reduce the probability of a power-systems-

ignited wildfire while minimizing load shedding

• Developed novel anti-islanding scheme, method 

to enforce N-1 security

CA-NV-AZ
RTS-96 Test Case

Wildfire Mitigation Via Optimal Transmission De-Energizing



Demand Response for Resilience

• Integrate demand response into restoration and 
emergent energy management 

• Further extend island operation duration 
• Applicable for buildings and residential homes
• Powered by two-level management framework

• Real-time building-level management is verified
• Facility for Low Energy eXperiments (FLEXLAB) at 

LBNL
• Stone edge farm microgrid in Sonoma, California

Tested at FLEXLAB and Stone edge farm microgrid 



• Optimization model

• Large-scale MILO model

• Stochastic approach

• High performance computer (HPC)

Cost/Benefit Analysis

High-fire-threat identified locations:  Mexico’s most wildfire affected regionsStochastic Expansion and Switching Planning for PSPS [6]

Grid Design and System Hardening

[6] D.A. Zuniga Vazquez, F. Qiu, N. Fan, K. Sharp, D. Zhao, T. Hong, Stochastic Expansion and Switching Planning for Public Safety Power Shutoffs, to be submitted to IEEE Transaction on Power Systems, Apr 2021.

• Transmission and generation expansion (TGEP)

• Optimal power flow (OPF)

• Transmission line hardening: targeted undergrounding

• Transmission line switching

• Weather station information 

• Index: KBDI

• Satellite vegetation images

*Powered transmission lines with wildfire ignition risk after line switching



Planning  Stage - Grid Design and System Hardening

Grid Topology Improvements to Mitigate or Reduce Public Safety Power Shutoff (PSPS) Events

Key innovation:

• Dynamic (networked) microgrids when 

disconnected from main grid

• Use mobile generator to supply local demand

• Co-optimized repair truck routing for 

distribution system restoration

• Optimized vegetation management for fire 

ignition risk reduction

Fire/Drought IndexesFragility  Analysis

Wildfire Event
Forecast

[4] Pacific Gas and Electric Company (PG&E), 2021 Wildfire Mitigation Plan Report 
[5] Southern California Edison (SCE), 2021 Wildfire Mitigation Plan Update.

Pacific Gas and Electric (PG&E) [4]:
• 6 temporary microgrids (3 via pre-installed 

interconnection hubs) for PSPS events
• 62 substations operationally ready to leverage 

temporary generation during PSPS events

PG&E Targets 2021 2022 

Temporary 
Distribution 
Microgrid

5 additional
microgrids

7 additional 
microgrids

Substation 
Distribution 
Microgrid

8 microgrids 8 microgrids

Southern California Edison (SCE) [5]: 
• In early 2020, a Request for Proposal (RFP) was 

issued unsuccessfully for six microgrid. Further 
research/analysis is required.

• Over the next three years (2021-2023) SCE aims 
for the substantial completion of a microgrid site.



Networked Microgrids

• Networked Microgrids
• Physically-connected for exchanging 

power;
• Functionally-networked for coordination; 

• Significantly extend island operation 
duration 

• Successfully demonstrated
• Bronzeville-IIT “microgrid cluster”

• ANL is leading the efforts to demonstrate on 
IIT campus with multiple building microgrids 

Field test on IIT campus

https://www.comed.com/News/Pages/NewsReleases/2018_02_28.aspx



Networked Microgrids w/ Dynamic Boundary

• Static Microgrids vs. Dynamic Microgrids
• A distribution grid can be automatically divided into several autonomous 

microgrids surrounding local energy resources in response to power outages 
in the system. The configuration of these microgrids can be changed 
dynamically

Static MGs Dynamic MGs

Static electric boundaries and connection point 
with external system

Dynamic electric boundaries and dynamic point of 
interconnection with external system

Energy resources are managed in a static 
group

Energy resources need to be grouped dynamically

Operates as a single entity Coordination operation is required

Static MG #1 Static MG #1

Static PCC

R

R

R
R

R

R
R

R

R

Static MG #2 Static MG #2
Off-line DG

R R

R

R

R

R R

R

R

R

Dynamic Point of 
Interconnection

Regrouped 
DG

Dynamic MG #1

Dynamic MG #2
Dynamic MG #1

Dynamic MG #2



Distribution Restoration

• Integrated restoration framework developed by ANL
• Solar + Storage
• Mobile storage
• Crew dispatch

• Address practical issues (e.g., cold load pick-up, switching 
sequence, large-scale, repair and maintenance)

• Powered by comprehensive modeling and optimization 
techniques

Integrate flexible operational concepts (e.g., DER, microgrid, mobile 
storage) with practical constraints (e.g., CLPU, switching, repair)
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What does GATOR do?

• GATOR* computes climate statistics from Argonne climate modeling results, and outputs mapping layers
• Input data are daily values for:

• Heat index,
• Precipitation,
• Relative humidity,
• Solar radiance,

spanning three 10-year periods:
• Historical (1995 – 2004)
• Mid-century (2045 – 2054), and
• End-of-century (2085 – 2094)

for North America at a 12km resolution
• The GATOR data repository was recently updated to include KBDI data,

and the code was updated to include it (GATOR-FIRE)
*Kuiper, James, Veerabhadra Kotamarthi, Andrew Orr and Jiali Wang. Geospatial Analysis Tool Kit for Regional Climate
Datasets (GATOR) An Open-source Tool to Compute Climate Statistic GIS Layers from Argonne Climate Modeling Results.
Argonne National Laboratory, ANL/EVS-18/3, August, 2017.

• Temperature (maximum and minimum),
• Wind chill,
• Wind speed, and
• Keetch-Byram Drought Index (KBDI)



What is the Keetch-Byram Drought Index (KBDI)?

• KBDI* is an index used to describe wildfire potential
• Calculated using daily maximum temperature, daily 

precipitation, and annual accumulated precipitation
• Values range from 0 (low wildfire potential) to 800 

(extreme drought and unpredictable wildfire 
behavior)

• Used by the U.S. Forest Service, Texas Forest 
Service, U.S. Army, and Canadian Forest Service 
for fire management and planning

*Keetch, J. J.; Byram, G. M. A Drought Index for Forest Fire Control SE-38. U.S.D.A. Forest 
Service Research Paper 1968.

Spruce beetle damage in Oregon
Source: USFS, https://www.flickr.com/photos/ 
151887236 @N05/36317722686/in/album-
72157687935138872/ 



What is the Keetch-Byram Drought Index (KBDI)?

• Computed KDBI for most of North America from 
observed historical data, and modeled historical 
and projected future data1,2

• KBDI performs best in regions less sensitive to 
wind effects, and with sufficient fuel on the 
ground

• Many other wildfire risk indices exist for different 
regions/environments, and Argonne will be 
adding more of them

1Brown, E.K., J. Wang, and Yan Feng. 2020. U.S. wildfire potential: a historical view 
and future projection using high-resolution climate data. Environmental Research 
Letters. 16 034060.
2Wang, J., and V. R. Kotamarthi, 2015: High-resolution dynamically downscaled 
projections of precipitation in the mid and late 21st century over North America. Earth’s 
Future, 3, 268-288, doi:10.1002/2015EF000304.



Example KBDI statistics computed by GATOR-FIRE

• KBDI from observed historical data
• Monthly, and annual average KBDI
• 95th percentile (value 95% of values are 

below)
• KDBI from climate model results

• 95th percentile for historical period
• Number of days over 95th percentile for

mid-century, and end-of-century periods
• At right, 95th percentile KBDI for 2002

from climate model results 



Example KBDI statistics computed by GATOR-FIRE

95th Percentile KBDI with wildfire locations (2000)

2050

2090

Number of days > 
historic 95th percentile



Example KBDI statistics computed by GATOR-FIRE

Average observed KBDI with wildfire locations (2004)



KBDI statistics are being added to the Energy Zones Mapping Tool

• Publicly available web-based mapping tool
• Large geospatial data library (>330 layers)

• Energy infrastructure
• Energy resource
• Siting factors relevant to energy analysis
• Reference/background

• Suitability modeling and analysis for:
• Power generation (37 power plant models)
• Energy corridor paths (3 corridor models)

• KBDI statistics (to be added in near future):
• Data downloadable
• Visualize wildfire risk with any mapping layer
• Include wildfire risk as a siting factor when modeling 

suitability of potential projects

http://ezmt.anl.gov



Research staff and funding

• Original climate modeling
• Jiali Wang, Atmospheric and Earth Scientist
• Rao Kotamarthi, Chief Scientist, Atmospheric Science and Climate Department Head
• Funded by Strategic Environmental Research and Development Program (SERDP), and DoD

• Raw KBDI computations funded by DOE Science Undergraduate Laboratory Internship (SULI) Program
• Emily Brown, Argonne SULI Intern, now at Berkeley University
• Yan Feng, Principal Atmospheric and Climate Scientist
• Jiali Wang

• GATOR and GATOR-FIRE
• Jim Kuiper, Principal Geospatial Engineer
• Funded by SERDP

• Energy Zones Mapping Tool (EZMT)
• Jim Kuiper, EZMT Technical Coordinator, and many others
• Funded by the U.S. Department of Energy, Office of Electricity



Geospatial Analysis Tool Kit for Regional Climate Datasets (GATOR)

James Kuiper ● Argonne National Laboratory ● jkuiper@anl.gov
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OUR CAPABILITIES AND STAFF EXPERTISE

Our Capabilities
 Decision science
 Modeling and simulation
 Geospatial analysis and data 

visualization
 Resilience analysis
 Preparedness
 Hazard mitigation
 Response
 Recovery
 Social and behavior systems
 Infrastructure sciences

Fielding a Multi-disciplinary Team of Subject Matter Experts
Our People

 Emergency Managers
 Geospatial analysts
 Engineers
 Economists
 Social scientists
 Urban planners
 Public policy experts
 Operations researchers
 Intelligence analysts 



CURRENT ANALYTIC TOOLS AND RESOURCES



RESILIENCE ANALYSIS AND PLANNING TOOL (RAPT)

www.fema.gov/rapt



Visualize and Analyze Data about Your Community 

Infrastructure
(21 infrastructure 
layers)

Hazards/Risk
Estimated 
annualized 
frequency, historic, 
real-time hazard 
layers

People and 
Community
(22 indicator 
layers)   

• RAPT allows users to stack 
multiple data layers to identify 
and address different areas of 
concern. 

• Data available at the county 
or census tract level.

VISUALIZE AND ANALYZE DATA ABOUT YOUR 
COMMUNITY



Historic Tornado Tracks

• Estimated Annualized Frequency (from 
National Risk Index)

• Historic Tornado and 
Hurricanes

• National Flood Hazard 
Zones

• Real-Time Weather 
Watches and Warnings

RAPT: HAZARD AND RISK LAYERS



RAPT: ADDRESSING 
WILDFIRE RISK

Hazard/Risk:
Wildfire (frequency event days/year);
Incident Analysis Tool enables users to 
draw projected fire path. 

Infrastructure:
Hospitals inside and outside potentially 
affected area.

Census Tract:
% of population age over 65.

LAYER COMBINATION – Santa Clara, CA

DECISION SUPPORT EXAMPLES
• Priority hospital/nursing homes for 

evacuation support. 
• Hospital locations outside of impact 

zone to re-direct patients.
• Planning and operations support to 

help evacuate people with disabilities. 



COVID-19 MISSION ASSIGNMENT: RECOVERY 
DATA AND ASSESSMENT
 Provide data analytics support to 20+ federal 

agencies involved in COVID-19 recovery efforts. 

 A key objective has been to collect and analyze 
data to identify near real-time socio-economic 
impacts.

 Analyses can provide insight into communities 
impacted by other types disasters.

– Products used to support impact 
assessments from Western wildfires and 
Gulf Coast hurricanes during 2020.

 2021 Focus: providing analytic resources to 
state, local, tribal, and territorial jurisdictions.

County GDP Impacts as of October 2020

County GDP Impacts as of January 2021



 On May 10th, Argonne will publicly release a series of indices and other 
analytic resources to support ongoing COVID recovery decision 
making.

 Users will be able to find these resources at www.anl.gov.

 Forthcoming products include:
– County Economic Impact Index: Measures the estimated 

monthly change in county GDP since the onset of the COVID-19.

– State and Local Government Revenue Vulnerability Indices: 
Measures the estimated monthly change in state and local 
government revenue since the onset of COVID-19.

– Housing Stability Index: Measures the near real-time change in 
housing stability for renters and owners since the onset of 
COVID-19.

– Internet Access Index: Measures household access to high-
speed internet based on the availability of broadband from 
Internet Service Providers, household subscription rates, and 
access to internet-enabled devices. 

PUBLICLY AVAILABLE COVID IMPACT 
ASSESSMENT RESOURCES



ONGOING RESEARCH AND DEVELOPMENT



 ANL will estimate the exceedance probability of electric outages of a certain magnitude 
caused by wildfires, hurricanes, earthquakes, tornados, ice storms, and severe thunderstorms 

– Historical data will be supplemented by data from ANL’s advanced climate models, 
including a novel hurricane model designed to simulate offshore storm formation, storm 
paths, and landfall. 

– ANL will examine risks under both current conditions and RCP 4.5 & 8.5 scenarios. 

 Hazard scenarios will be run through ANL’s EPfast and EGRIP electric system models to 
assess impacts to the electric system. 

 ANL will report estimates for demand loss (MW), unserved energy (MWh), customers affected 
(#), equipment damage ($), and restoration time (hours).  

ELECTRICITY SUBSECTOR RISK 
CHARACTERIZATION
DOE’s Infrastructure Security and Energy Restoration (ISER) Division asked ANL to model the risks 

to the electric system posed by six (6) natural hazards. The analysis leverages ANL’s advanced 
climate and electric power flow models to determine the risk, extent, and duration of outages.



 New laboratory-directed research initiative.
 Planned Approach:

– Phase 1 (2021)
• Develop an event generation and characteristics methodology for hurricanes, including trajectory, 

intensity, duration
• Overlay event characteristics with existing infrastructure and population data.
• Incorporate methodology to model estimated economic impacts to the affected region.

– Phase 2 (2022)
• Develop methodology to produce downscaled, sub-county impact estimates.
• Incorporate high-resolution climate change data.
• Develop event generation and characteristics methodology for additional hazards, including riverine 

flooding and wildfire.

 Intended use cases:
– Support critical decision-making during response and recovery.
– Inform long-term mitigation and resilience investments.

RAPID ASSESSMENT OF IMPACTS AND NEEDS 
MODEL

Goal: Provide rapid, high-confidence, quantitative assessments of impacts from disasters to 
infrastructure, housing, and the economy.



THANK YOU

Iain Hyde ● Argonne National Laboratory ● ihyde@anl.gov 



SUMMIT: Standard Unified Modeling, Mapping, 
and Integration Toolkit
Overview and Wildfire Applications
Russell Gayle, Sandia National Laboratories

4/22/2021

Sandia National Laboratories is a 
multimission laboratory managed and 
operated by National Technology & 

Engineering Solutions of Sandia, LLC, a 
wholly owned subsidiary of Honeywell 

International Inc., for the U.S. 
Department of Energy’s National 

Nuclear Security Administration under 
contract DE-NA0003525.

SAND2021-4741 PE



SUMMIT: Problem Statement

Objective:
Provide USG (FEMA, CWMD, CISA, etc.) a scalable M&S 
platform to efficiently produce data for multiple scenarios or 
archive, share, and reuse any data utilized in plan creation 
for future planning, comparative analysis or during 
emergency response operations.

Current Gaps
• Integration: Currently disparate systems prohibits complex, 

cascading analysis, sharing, and collaboration

• Uncertainty: Planning only done for single scenarios and 
response does not typically convey uncertainty

• Reuse: Data from planning not archived and used during 
response or subsequent planning

Desired Outcome
• Enhanced national preparedness (THIRA) through robust multi-scenario planning capability 
• Dramatically shorten the time to respond to disaster requests for informations



Modeling and Simulation Situational Awareness

Homeland Security Enterprise

Enabling PPD-8 aim for an integrated, all-of-Nation, capabilities-based approach to preparedness [and response]

FEMA CISA S/L/T/T …USACE

SUMMIT



1 scenario , 1 set of inputs

SUMMIT for Response

0
1
2
3
4
5
6
7

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

Clearance Times

Library Analytics

…

Batch & Large-Scale Model Run
Library Creation

Weather

Traffic feeds

…

Live Data Fusion

Hazard data

Data Analytics
Visualization & Uncertainty

SUMMIT for Planning



The SUMMIT Process

Discover Configure Execute Analyze



SUMMIT Engagement: 
California Exercise and Simulation Center (2016)
• Highlights and Impacts:

• Supported “Decisions Matter” exercise series 
• Sacramento MetroFire awarded $50K by State Homeland Security Grant 

Program (SHSGP) to develop SUMMIT templates for CA
• New business model for sustainment: state/regions invests
• CESC team is a strong SUMMIT advocate

• Risks:
• DHS license for technology transfer still pending
• Need to implement new business model (pay-per-use, certifications, etc.) 

to sustain SUMMIT

• Outlook for the future…
• Harden 3 templates (Cl2 Tanker, Wildfire, crude oil?)

• For single runs and batch analysis
• Work supported in part by SHSGP (Jan-Sep 2016)

• Create exercise guides for the use of each template 
• Seek additional CA support for sustainment (SacOES, CalFire)



Wildfire Scenario Template: Overview
Hazard
Wildfire

Impacts
Population     Infrastructure    Economic

Planning/Response
Evacuation



Wildfire Scenario Template: Model Selection
Study Name

Click each navigation tab to 
configure each model

OR
Click each icon



Wildfire Scenario Template: Fire Configuration

Click on map to set ignition point

Set weather conditions



Wildfire Scenario Template: Infrastructure Configuration

Select the infrastructure layers to include in the 
analysis. It is recommended to check “Select All”.



Wildfire Scenario Template: Wildfire Results

79

Check Fire Perimeter Time checkbox to see fire contours

Slider bar to see size/contour of fire at a given time



Wildfire Scenario Template: Affected Infrastructure Results

Click Affected Infrastructure
checkbox to view affected 

infrastructure
Transmission line 

affected



Thank You!
Any Questions?



Web-Based Geospatial Analytics Application 
Frameworks and Demos
Leo Bynum, R&D S&E, Computer Science, Sandia National Laboratories
Phone: (505) 284-3702
E-mail: lbynum@sandia.gov Apr 22, 2021



Using and Valuing Ecosystem / Physical Science and 
Earth Observations in Wildfire Management Decisions

R. Bernknopf and O. Olofinsao UNM, C. Broadbent BYU – Idaho, V. Tidwell Sandia National Laboratories, D. 
Goodrich USDA, T. Smith UPenn emeritus, C. F. Casey, USGS, B. Peterson USGS, J. Cain NMSU

Collaborators
USGS: Fort Collins Science Center, National Land Imaging Program, National Geologic Mapping Program, Northwest 

Science Center – Corvallis, U.S. Forest Service: Pacific Southwest Region and Geotechnical Applications Center April 22, 2021

Sandia National Laboratories is a multimission 
laboratory managed and operated by National 

Technology and Engineering Solutions of Sandia 
LLC, a wholly owned subsidiary of Honeywell 
International Inc. for the U.S. Department of 

Energy’s National Nuclear Security Administration 
under contract DE-NA0003525.



Assessing wildfire risk management tradeoffs on 
public lands and in nearby communities

• Why: Measure wildfire benefits and risks
• What: Create analytical tool for benefits vs. risks
• How: Apply Bayesian network (probabilistic causal 

model) 
oUtilize remote sensing: Landsat and MTBS 

transitions 
oEstimate probability of habitat suitability: 

spotted owl and black bear
oForecast post - fire impact of natural hazards 
 Debris flows and floods
 Short and long run impacts to water quality 

from erosion and sedimentation
oEstimate exceedance probabilities of critical 

resources losses 
oEstimate economic benefits of forest mitigation 

or adaptation activities



Study region, California spotted owl habitat, 
and probability of habitat suitability



Impacts of the Rim fire on CA spotted owl habitat 



Analysis: Cost effectiveness of a hypothetical 
prescribed burn program



Legends: land use, infrastructure and post fire expected 
sediment yield in the Rim fire impacted region

yield in the Rim fire impacted region



Integrated Model: Mitigation vs. Adaptation

• Resource tradeoffs
• Natural resources
• Engineered infrastructure
• Decision making priorities subject to budget/time 

constraints

• Mitigation: Pre-fire treatments
• Bear and owl habitat
• Natural / cultural resources

• Adaptation: Post-fire treatments
• Infrastructure impacts (Kineros2/AGWA)
• Community resilience 

• Value of information
• Remote sensing 
• Updated science (e.g., burn severity maps using 

LANDFIRE)



Thank You
Richard Bernknopf rbern@unm.edu
Vince Tidwell vctidwe@sandia.gov

Craig Broadbent broadbentcr@byui.edu

mailto:rbern@unm.edu
mailto:vctidwe@sandia.gov
mailto:broadbentcr@byui.edu


Grid Resilience and Intelligence Platform

PI: Alyona Ivanova Teyber
aivanova@slac.stanford.edu

04/22/2021



GRIP Overview

✓ Using machine learning and data-driven approaches to
○ Anticipate extreme events;
○ Absorb using controls for DERs and flexible resources;
○ Recover by managing DERs in the case of limited 

communication to reduce recovery time.

✓ High level impacts 
○ Developed a platform and metrics that capture the resilience of 

grid assets
○ Anticipate multi-time scale grid vulnerabilities, for example:

■ Trigger asset replacement on multi-month scale 
■ Help mitigate the need for PSPS events on multi-week 

scale by minimizing the customer interruptions
■ Better control of day-of events 

○ IT/OT system integration 
■ Reduce impacts of cyber events in the event of 

communication loss 
○ Sophisticated User Interface

✓ Technical Team

✓ Technical Advisory Group



Wildfire prevention with GRIP

Anticipation

● Pole Failure Modeling 
● Vegetation line contact analysis 

using GIS data 
● PSPS analytics 

Absorption

● Fault Isolation 
● Virtual Islanding Formation 
● Power Balancing 

Recovery

● Fast Anomaly Detection using ML
● ML image recognition for poles  
● Transmission blackstart



Anticipation

• PSPS analytics
• Determines the optimal power-shut off for 

short term decisions in wildfire prevention
• Objective: maximize amount of power while 

minimizing risk of fire ignition
• Selective de-energization of system 

components 

• Vulnerability metric
• Captures the impact of wind pressure on face 

of pole and proximity of vegetation on the 
overhead lines

• Defines a pole vulnerability metric
• Models the electrical fault propagation and pole 

restoration
• Uses weather data to drive

the model
• Uses 3m GIS data to capture vegetation 

proximity to lines
• Supports arbitrary vulnerability simulations
• Accounts for pole degradation
• Capable of large equipment and model library 

import
• Integrates with CYME

Data provided by California Forest 



Absorption - fire use-case

• Motivation: avoid loss of power to downstream 
portions of the grid 

• Allows utilities to better understand the 
transition to a system where distribution 
circuits can continue to serve load post loss of 
bulk grid

• Algorithm identifies the fault and reconfigures 
the system into “virtual islands” while 
balancing maximum amount of load using 
local DERs

• Uses the slack bus, DERs and flexible loads, 
such as water heaters and HVACs to maintain 
maximum load



Absorption

• Motivation: avoid loss of power to downstream 
portions of the grid 

• Allows utilities to better understand the 
transition to a system where distribution 
circuits can continue to serve load post loss of 
bulk grid

• Algorithm identifies the fault and reconfigures 
the system into “virtual islands” while 
balancing maximum amount of load using 
local DERs

• Uses the slack bus, DERs and flexible loads, 
such as water heaters and HVACs to maintain 
maximum load



Absorption

• Motivation: avoid loss of power to downstream 
portions of the grid 

• Allows utilities to better understand the 
transition to a system where distribution 
circuits can continue to serve load post loss of 
bulk grid

• Algorithm identifies the fault and reconfigures 
the system into “virtual islands” while 
balancing maximum amount of load using 
local DERs

• Uses the slack bus, DERs and flexible loads, 
such as water heaters and HVACs to maintain 
maximum load



Absorption

● Large-scale test and validation: 
○ Vermont Electric Co-op distribution 

feeder 
○ Deployed 150 water heaters with 

controls
○ Results showed the unserved energy 

reduction from 100% to 10% using 
GRIP



Recovery

● Anomaly Detection using ML
○ Detects equipment failure and non-technical losses from meter data 

streams
○ Achieves near perfect identification of theft and hardware failures from 

same meter test/training data
● Fast anomaly detection

○ Detects equipment failure (residential, transformer) from meter data 
streams 

○ Sub-hour train/test performance to enable real-time detection
● ML image recognition for poles  

○ Neural networks for image recognition from video data 
● Transmission black start

○ Sequences to de-energize generators and opening/closing switches to 
restore power in transmission network 

○ Visualization of the sequence using power flow



Deployment and Integration with Utility Tools

● OpenFIDO - Open Framework for Integrated Data Operations 
○ Integrates data converters to re-format model compatible with GRIP

■ CYME converter 
■ Equipment libraries

○ Supports on-premise and cloud deployment
● HiPAS GridLAB-D - High Performance Agent-based Solver

○ Power flow solver for simulation and modeling of electrical networks
● NRECA OMF.coop

■ Analytics hosted on the platform with users from over 176 utilities, vendors, and universities
● California IOU Deployment - in progress 
● 150 field deployed thermostatically controlled devices with GRIP absorption algorithm



Thank you

We invite you to collaborate and participate in testing our tools. 

Contact information: 

Alyona Teyber

aivanova@slac.stanford.edu

www.grip.energy

mailto:aivanova@slac.stanford.edu


Grid Resilience and Intelligence Platform
Alyona Teyber on behalf of SLAC National Accelerator Laboratory



Questions? Contact our Speakers:

Argonne National Laboratory

fqiu@anl.gov

Feng Qiu
Argonne National Laboratory 

jkuiper@anl.gov

Jim Kuiper
Argonne National Laboratory 

ecportante@anl.gov

Edgar Portante

Sandia National Laboratories

rgayle@sandia.gov

Russell Gayle
Sandia National Laboratories

lbynum@sandia.gov

Leo Bynum
Argonne National Laboratory 

ihyde@anl.gov

Iain Hyde

Sandia National Laboratories

rbern@unm.edu

Robert Bernknopf
SLAC National Accelerator Laboratory

aivanova@slac.stanford.edu

Alyona Teyber
Office of Electricity 

stewart.cedres@hq.doe.gov

Stewart Cedres

mailto:fqiu@anl.gov
mailto:jkuiper@anl.gov
mailto:ecportante@anl.gov
mailto:rgayle@sandia.gov
mailto:lbynum@sandia.gov
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Thank You
Our Next Webinar: 

Modeling & Analytical Tools | Post Fire Analysis
April 29, 2-4 PM ET

https://www.energy.gov/oe/wildfire-mitigation-webinar-series 

Want to Connect?
Contact Stewart Cedres at
stewart.cedres@hq.doe.gov
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