

Wildfire Webinar Series: Webinar 2 **Situational Awareness**

April 15, 2021

Michael Pesin

Deputy Assistant Secretary Advanced Grid Research and Development

Office of Electricity

Tech: Multi-Source Multi-Time-Scale Wildfire Data Warehouse and Visualization Platform

Feng Qiu

Manager, Advanced Grid Modeling, Optimization and Analytics, Energy Systems Division Argonne National Laboratory

Apr 15, 2021

Overview

A risk assessment and mitigation framework for fire hazards caused by power delivery infrastructure

- Data warehouse & visualization
- Wildfire risk analysis & modeling
- Wildfire risk mitigation support

Data Warehouse & Visualization

Wildfire Risk Analysis & Modeling

- · Understanding wildfire
- Wildfire prediction
- Consequence study
- Trend analysis

U.S. DEPARTMENT OF

Wildfire Risk Mitigation Support

Operation stage

- Optimal de-energization
- Disaster response

Planning stage

- Temporary microgrids to mitigate PSPS
- Mobile generation

Capability Summary

Wildfire Data Warehouse and Visualization Platform

- Purpose
 - Provide a complete set of data and a visualization tool to study wildfire risks caused by power delivery
- Features
 - A data management system consisting of a set of data for power delivery incurred wildfire risk analysis
 - grid assets, wildfire danger indices, vegetation data, weather and climate, fire incidents reports
 - Multi-time-scale, automatically updated
 - A visualization platform
 - Multiple layers, automatic updates, historical and future data
- Potential users
 - Research communities, utilities that do not have dedicated wildfire applications
 - policy makers, community/infrastructure developers, etc.

Contributing Factors: Wildfire Ignitions by Power Delivery

• Three categories of factors for a wildfire ignition by power system infrastructure

Fire Danger Indices

Fire danger indices provide an estimation of the **wildfire risk**. We have developed the capability to determine the following commonly-used indices for a range of time scales, from near **real-time** to a week, to seasonal outlook, to the longer-term projection over the next decades at high spatial (4km and 12km) resolutions.

- a) KBDI (Keetch-Byram Drought Index) [3,4]
 - Applied by U.S. Forest Service (USFS), Texas Forest Service, U.S. Army
- **b) FPI** (Fire Potential Index) [5,6]
 - Applied by USFS, United States Geological Survey (USGS)
 - Proprietary versions of FPI are being used by power utilities (e.g., PG&E, SCE)
- c) CFWI (Canadian Fire Weather Index) [6,7]
 - Applied by the Canadian Forest Service and variations have been adopted by Australia, France, and Croatia.
- d) A machine-learning fire danger model is being developed

[3] Keetch J. J. and Byram G. M. (1968). A Drought Index for Forest Fire Control SE-38 U.S.D.A. For. Serv. Res. Pap

[4] Brown, E.K., J. Wang, and Yan Feng. 2021. U.S. wildfire potential: a historical view and future projection using high-resolution climate data. Environmental Research Letters.
[5] Burgan R.E., Klaver R. W., and Klarer J.M. (1998). Fuel models and fire potential from satellite and surface observations. International Journal of Wildland Fire, 8(3), 159 – 170
[6] Yu, G., J Wang, Y. Feng, E. Brown, and D. Wright. 2021. The performance of fire danger indices and its utility in predicting future wildfire danger over the conterminous United States. To be submitted

[7]Turner, J.A. and Lawson, B.D. (1978). Weather in the Canadian Forest Fire Danger Rating System. A user guide to national standards and practices. Environment Canada, Pacific Forest Research Centre, Victoria, BC

Future Projection of US Wildfire Potential for Infrastructure Planning

600

Days with KBDI

-42.⊆

-63 Change

42

21

A significant increase is projected in the number of days (red color) and area (dotted) with large fire danger potential

Figure 4. Change in the number of days and area with KBDI > 600 from the historical period to late 21st century using WRF-CCSM4. Shading indicates changes in the number of days; significant changes (signal-to-noise ratio larger than 2) are hashed. Dots indicate that a grid cell has a KBDI value greater than 600 only in the future. Areas without dots indicate that a grid cell either has KBDI > 600 in both periods or does not have KBDI > 600 in either period.

Vegetation Type

The **existing vegetation type** (EVT) information represents the current distribution of the terrestrial ecological systems classification [6].

Information can be accessed in a 30 m spatial granularity and a yearly time granularity if available, including:

- a) Fuels EVT class name.
- b) EVT Lifeform.
- c) EVT Physiognomy.
- d) EVT Group name.
- e) Crosswalk to Society of American Foresters and Society for Range Management cover type.
- **f) EVT Physiognomic Order** from Federal Geographic Data Committee classification system.
- **g) EVT Physiognomic Class** from Federal Geographic Data Committee classification system.
- **h) Physiognomic Subclass** from Federal Geographic Data Committee classification system.

Weather and Climate Variables

Increase of Extreme Hot Days

- Wind speed/wind gust Unit (m/s): 10m above ground
- Relative humidity Unit (%) 2m above ground
- Air Temperature (daily maximum) Unit (K): 2m above ground
- Precipitation (total, rate) Unit (mm, mm/s) surface level

Changes in number of days greater than 95 degF at each grid point in period of 2045-2054 under RCP4.5 (left) and RCP8.5 (right). Changes are shown as number of days per year (Zobel et al. 2017)

- Soil moisture/soil temperature unitless (kg/kg), 2m deep below the ground
- Geopotential height at 500hPa/ Sea level pressure: provide large scale weather circulations

Available in:

- Near real-time 3-km resolution, hourly updated, with radar data being assimilated every 15 min over a 1-h period [7,8];
- Ten-year time slices for 1995-2004, 2025-2034, 2045-2054, and 2085-2094 under the business-as-usual and mitigation scenarios [9]

U.S. DEPARTMENT OF

[7] HRRR data archive: doi: 10.7278/S5JQ0Z5B

[8] Blaylock B., J. Horel and S. Liston, 2017: Cloud Archiving and Data Mining of High-Resolution Rapid Refresh Model Output. Computers and Geosciences. 109, 43-50. doi: 10.1016/j.cageo.2017.08.005 [9] Zobel, Z., J. Wang, D. J. Wuebbles, and V. R. Kotamarthi. 2017: High Resolution Dynamical Downscaling Ensemble Projections of Future Extreme Temperature Distributions for the United States. Earth's Future

Fire Incident Reports

The California Public Utilities Commission (CPUC) provides the Fire Incident Data Reports from 2014 – 2019 for the following power utilities [9]:

- Pacific Gas and Electric (PG&E)
- Southern California Edison (SCE)
- San Diego Gas & Electric (SDG&E)

These reports provide information of fire incidents ignited by power system infrastructure including:

F	ir	e	S	ta	rt

- Date
- Time

Location

- Latitude
- Longitude
- Material at origin
- · Land use at origin

- Fire
- Size
- Suppressed by
- Utility facility
- Facility identification
- Voltage

٠

- Equipment involver
 - Type (overhead/subsurface/underbuild)

Outage

- Date
- Time

Field observations

- Suspected initiating event
- Equipment failure
- Contact from object

Power Infrastructure

Power Infrastructure [10]

Power substations

Electric power substations primarily at voltages equal to, or greater than, 69 kilovolts. Substations with a maximum operating voltage less than 69 kilovolts may be included, depending on the availability of authoritative sources. Geographic coverage includes the United States and the U.S. Territories.

Power transmission lines

Includes lines operated at relatively high voltages varying from 69 kV up to 765 kV. Underground transmission lines are included where sources were available. Geographic coverage includes the United States and the U.S. Territories.

• Power plants

All power plants that are operating, on standby, or short- or long-term out of service with a combined nameplate capacity of 1 MW or more in the United States

Dynamic Power Operation

- Power flows, voltages
- Power generated / consumed at each substations
- Calculated through Argonne's dynamic power operation models.

Data Warehouse and Visualization

Visualization

Argonne's Wildfire Team

Grid Program Lead:

Mark Petri

Energy Systems (ES) Division:

	Feng Qiu, Principal C	computational Scientist and Group Manage
	Alinson Xavier,	Computational Scientist
Shijia Zhao,		Postdoctoral Appointee
	Dongbo Zhao,	Principal Energy Systems Scientist
	Tianqi Hong,	Energy System Scientist
	Rui Yao,	Energy Systems Scientist
	Alyssa Kody,	Argonne Scholar
	Daniel Zuniga,	Co-Op Technical – PhD
	Chirag Khandhar,	Graduate Research
	Akshay Damodar,	Graduate Research

Environmental Science (EVS) Division:

Yan Feng, Principal Atmospheric and Climate Scientist Jiali Wang, Atmospheric & Earth Scientist Guo Yu, Research Aide Technical – PhD

Industry Advisory Board:

Southern California Edison (SCE)

Acknowledgement

Most of this work is supported by Argonne Laboratory Directed Research and Development (LDRD)

The advisory support from California's electricity utility, **Southern California Edison** (SCE), is acknowledged and appreciated.

U.S. DEPARTMENT OF P **OFFICE OF** ELECTRICITY

> **Feng Qiu,** Manager, Advanced Grid Modeling, Optimization, and Analytics, Energy Systems Division Argonne National Laboratory

Email: fqiu@anl.gov

RISK & CRISIS COMMUNICATION FOR WILDFIRE RESPONSE

BRETT HANSARD

Risk & Crisis Communication Program Public Affairs Science and Technology (PAST) Fusion Cell

Argonne

April 15, 2021

PAST FUSION CELL & ACADEMY

Who we are and what we do

- Public Affairs Science and Technology (PAST) Fusion Cell & National Public Affairs Academy
- Part of Argonne's National Preparedness Analytics Center
- Engage with forward-thinking public affairs professionals and social scientists to improve all aspects of communication as it relates to emergency management
- Advanced training programs, exercise support and technical assistance for emergency management and communication professionals
- Wide range of emergency public information training topics
- Dynamic news media and social media simulations for training and exercises

PAST FUSION CELL & ACADEMY

Who we work with

Including:

- Department of Energy
- National Nuclear Security Administration
- Chemical Stockpile Emergency
 Preparedness Program
- Federal Emergency
 Management Agency
- Department of Homeland Security

- Department of the Army
- Department of Defense
- Multi-Jurisdictional First Responders
- Multi-Jurisdictional Public Information Officers/Public Affairs Officers
- Spokespersons/Subject-Matter Experts/Leadership

2021 COURSE CATALOG

Best practices for PIO/PAOs

The Public Affairs Science and **Technology (PAST) Fusion Cell** Academy offers virtual/In-person learning on a wide range of emergency management and public affairs topics, plus realistic virtual/in-person drills to test and reinforce skills.

https://pastfusion.egs.anl.gov/wp-content/uploads/2021/02/2021-PAST-Fusion-Cell-Academy-Course-Catalog.pdf

LEARN FROM THE PAST AND PREPARE FOR THE FUTURE

Abbreviated Course Listing All courses can be delivered virtually or in-pe

PUBLIC AFFAIRS

PAA101	Public Affairs Awareness for Leadership
PAA102	Public Affairs Immersive Training for Communication Professionals
	CRISIS COMMUNICATION
RC200	Risk and Crisis Communication Methodology and Strategy

RC200	Risk and Crisis Communication Methodology and Strategy	
RC201	Joint Information System and Joint Information Center Operations and Strategy	
RC202	Identifying and Addressing Communication Complexities	
RC203	Building and Maintaining a Resilient Joint Information System	
RC204	Risk and Crisis Communication Strategy and Practice for Radiological and Nuclear Incidents	
RC205	Risk and Crisis Communication Strategies for Dam Emergencies	
RC206	Risk and Crisis Communication Practice for Telephone Teams	
RC207	Risk Communication — Moving Individuals from Awareness to Action	
RC208	Identifying and Addressing False Information in the Digital Era NEW	
PC209	Improving Emergency Communications for Vulnerable Populations NEW	

- SMDC300 Social Media Technology and Digital Communication
- Advanced Social Media Technology and Digital Communication SMDC301
- SMDC302 Advanced Social Media Strategy and Analytics
- SMDC303 The Social JIS/JIC
- SMDC304 Social Media for Situational Awarenes
- Social Media Monitoring and Reporting

PUBLIC INFORMATION TECHNOLOGY AND DIGITAL COMMUNICATION

- Public Information Technology and Practice for PITC400 Smartphones and Tablets
- PITC401 "Go Live" Livestreaming Technology and Practice
- PITC402 Mapping GIS Tools and Techniques for Public Affairs
- PITC403 Podcasts and Smart Technology for Public Information

MEDIA RELATION

2021 Course Cata

- MR500 Preparing the Spokesperson
- Spokesperson for Leadership and Subject-Matter Experts MR501
- MR502 Spokesperson for PIOs/PAOs
- MR503 Intense Spokesperson

EXERCISES AND DRILLS

Train to Prepare, Exercise to Respond

2021 COURSE CATALOG

All courses can be delivered virtually or in-person

All courses can be delivered virtually or in-person

PAST FUSION CELL & ACADEMY

Sampling of relevant courses for wildfire response

- Joint Information System/Center (JIS/JIC) Operations & Strategy
- Building and Maintaining a Resilient JIS
- Improving Emergency Communications for Vulnerable Populations
- Identifying and Addressing False Information in the Digital Era
- Social Media for Situational Awareness & Social Media Monitoring and Reporting
- Mapping GIS Tools & Techniques for PIOs/PAOs
- Spokesperson for PIOs/PAOs, Subject-Matter Experts and Leadership
- Go Live Livestreaming Technology

ALERT AND WARNING TECHNICAL ASSISTANCE

Why is getting alerts and warnings right so important?

CASE STUDIES

Camp Fire (2018) Used opt-in system but 1/3 not reached

Gatlinburg Fire (2017) Power outages meant messages not verified – not sent

Oroville Dam Spillway (2017) Evacuation caused hours of bumper-tobumper traffic

AUDIENCE

Those with role in communicating protective action guidance to public immediately preceding and during event:

- Emergency managers
- PIOs/PAOs
- Social media communicators

TA OUTCOMES

- Faster dissemination of effective messages
- Greater public understanding and response to A&W messages

usion Cell Academy

VIRTUAL TRAINING PLATFORM

Exercise Training Network site

ETN MULTIMEDIA DASHBOARD

Real-time television, print and radio news stories for exercises

CSEPP BlueGrass20 September 16, 2020

PAST Fusion Cell Academy

EXERCISE TRAINING NETWORK

Example of mock media news report

VIRTUAL STUDIO

Example of live interview training

PAST FUSION CELL & ACADEMY

What we offer

- Identify and address training gaps in risk and crisis communication
- Establish best practices for PIO/PAOs and spokespersons
- Courses constantly evolving to reflect latest trends in communication
- Customized to meet specific needs and goals of training audience
- Maximize efficacy of critical messaging
- Challenging and realistic classroom and field training simulations
- Instructors with extensive real-world experience, familiar with wide range of hazards and training strategies

QUESTIONS?

Brett Hansard

Risk & Crisis Communication Program PAST Fusion Cell, Argonne National Laboratory bhansard@anl.gov www.anl.gov

EAGLE-I

Environment for Analysis of Geo-Located Energy Information

Aaron Myers, Geospatial Systems Architect, Geoinformatics Engineering Group, Geospatial Science And Human Security Division

April 15, 2021

Overview

- US DOE's operational and scalable data and information platform for real-time wide-area situational awareness of the energy sector
- Data science approaches to provide a centralized platform for monitoring power distribution outage for over 144 million customers; 92% coverage of US States and Territories
- Users from across the Federal Government including DOE, DHS, NGA, DOD, FEMA, and USDA along with state and other emergency responders.
- Supports the ESF#12 function within the National Response Framework (NRF)
- Providing modern framework for the future capabilities for emergency response and recovery support

Wildfire and Critical Infrastructure Data

- National Interagency Wildfire Center
 - Wildfire Perimeters
- Homeland Infrastructure Foundation Level Data (HIFLD)
 - 23 Layers
 - Transmission Lines
 - Power Plants
 - Natural Gas Pipelines
 - Updated Annually
- Other Hazard Information
 - Earthquakes
 - Tropical Cyclone Tracks
 - River Observations
 - Weather Watches/Warnings
- Social Media Layer
 - Filtered Tweets by Utility Companies

EAGLE-I Analytic Capabilities

Energy Infrastructure Damage Identification and Assessment Utilizing Imagery from Satellites and Airborne Systems

Project Overview:

 Generate scalable damage assessment and outage products to integrate and deploy through EAGLE-I to support response and recovery of energy infrastructures.

Project Technology:

- Satellite-based Broad area outage and restoration mapping using satellite-based (VIIRS) nighttime lights
- Machine learning from airborne UAS imagery for automated distribution pole and substation damage assessment

Image Quality: Enhancement for Damage Assessment

Automated Analyst Assist Tools

OriginalCorrectedImage: Second secon

DeHaze

Reduce the appearance of haze in imagery to improve clarity without negatively impacting image content.

Mitigate the reduction in brightness resulting from cloud shadow, which is generally undesirable, to achieve more consistent contrast that will aid analysis.

 Original RGB, Logarithmic Stretch
 Lime RGB Processing, No Stretch
 Lime RGB with Source Weighted Processing, No Stretch

 Image: Stretch
 Image: Stretch
 Image: Stretch

Enhance the image based on automatic extraction and identification of illumination information from the image itself while maintaining color fidelity.

Light Enhancement
Urban-Net: Predicting Propagation Consequences Using Synergistically Interacting Infrastructure Networks

Project Overview:

- ORNL develops URBAN-NET system that quantifies vulnerability & importance of critical infrastructure system (CIS) components across multiple CI networks
- URBAN-NET will analyze propagation of effects based on given "what-if" scenarios
 - (e.g. disaster preparedness exercises)
- Identify at risk infrastructure and downstream dependencies for wildfires and other events

Power Outage Event Monitoring

- Create a near real-time information overlay that
 associates power outages with severe non-notice events
 - Severe Weather and Thunderstorms
 - Tornados
 - Wildfires
 - Earthquakes
- Explore methods for identifying and recording man-made events that create large scale outages.
- Verified Data Sources to improve confidence Control variables

2020 utility customer estimates

National Laboratory

OFFICE OF

ForWarn: Satellite-Based Change Recognition and Tracking

Jitendra (Jitu) Kumar (kumarj@ornl.gov) Environmental Sciences Division Oak Ridge National Laboratory

April 15, 2021

😑 🛜 🐻 🕼 🕼 🕼 🕼 🕼 🖓 🐽 🚱 Base Map: Streets 🗸 Theme: N. American Vegetation Monitoring Tools

✓ Find Area:

Wildfires in United States

Active Penmeters (NIPC)

Historical Large Fire Perimeters

Since 2000, an average of 70,685 fires have burned an annual average of 7.1 million acres In 2020, over 58,250 fires burned 10.3 million acres. 40% of these were in California.

Wildfire management is carried out by USDA Forest Service and Department of Interior on federal lands, and states on non-federal lands.

- A number of agencies/entities monitor and record historical and active fire information, but in different ways.
 - However, a synoptic wall-to-wall examination of wildfires in US is still missing.

ForWarn: Satellite-Based Change Recognition and Tracking

- ForWarn provides near-real-time tracking of vegetation changes across landscapes in the United States.
- Led and supported by USDA Forest Service and used operationally within the agency.
- ORNL is a contributing partner supporting development of remote sensing and data analytics algorithms and technologies, high performance computing tools and software.

https://forwarn.forestthreats.org/

ForWarn: Satellite-Based Change Recognition and Tracking

- ForWarn provides near-real-time tracking of vegetation changes across landscapes in the United States.
- Based on MODIS Normalized Difference Vegetation Index (NDVI) data stream from NASA's MODIS instruments on board Aqua and Terra satellites.
- ForWarn monitors all lands all the all time for all potential change (disturbance and recovery) due to natural or anthropogenic disturbance agents (such as wildfires, droughts, floods, hurricanes etc.).
- <u>Spatial resolution</u>: ~250m <u>Temporal update frequency</u>: 8 days
- Designed for enhanced sensitivity to detect subtle changes in vegetation.
- Uses multiple baselines to detect ecosystem/disturbance specific changes.

https://forwarn.forestthreats.org/

ForWarn focuses primarily on forest lands

U.S. Forest Change Assessment Viewer

But it monitors and provides data for all vegetation types

U.S. Forest Change Assessment Viewer

Continuous monitoring of both disturbance and vegetation/fuel regrowth

- ForWarn provides a fast turn around assessment of disturbance as well as vegetation/fuel regrowth patterns.
- Forest Change Assessment Viewer (FCAV) is designed to see fine distinctions in all severe negative departures across CONUS, but can be optimized to focus on wildfires.
- ForWarn is the only system that monitors departure of current vegetation/fuel conditions from normal.
- In 10 years ForWarn has been operational, we have noticed that shallow roots vegetation (grasses and shrubs) respond to dry conditions rapidly and also rewet quickly when drought is over.
- These light fuels are susceptible to ignition, thus a near-real-time system is necessary to monitor these rapid changes in condition of grasses and shrubs OAK

Wildfire example: Camp Fire, CA 2018 (2018/11/08 - 2018/11/26)

U.S. Forest Change Assessment Viewer

🖶 🔮 🔎 🗩 🛓 🔮 🚽 Base Map: Streets
 Theme: Archived Near-Real-Time Change Maps (MODIS NDVI)
 Find Area:

- Camp Fire in Butte County CA was ignited by faulty electric • transmission line.
- Vegetation was already under stress due to extended drought.
- Burned areas were immediately identified by ForWarn.
- Vegetation in the burned area is yet to fully recover postfire.

Map Tools

Share this Map

Legend (click to clear layer)

Masks

Date/Time

MODIS Standar

ForWarn data availability

- ForWarn products are publicly available for free at <u>https://forwarn.forestthreats.org/</u>.
- All near-real-time and historical products (since 2000) are readily accessible via Web Mapping Service (WMS) and Web Coverage Service (WCS).

Information relevant for electrical infrastructure

- Specific focus on wildfire disturbance
- Before wildfire:
 - Quantification of potential fire risk, and fire spread potential in regions around infrastructure of interest
- <u>During wildfire</u>:
 - High spatial resolution relevant for decision making
 - High temporal resolution (and low latency) for planning, readiness, and response

Opportunities for wildfire warning system for electrical infrastructure

Zooming in to high threat areas

- High resolution imagery from public (such as ESA Sentinel-2/3) and commercial (such WorldView, PlanetLabs etc.) satellite platforms can improve the spatial resolution and enable a more effective monitoring and management of critical infrastructure.
- A telescoping strategy -- Tier 1: Leverage existing ForWarn ~250m product to identify regions of interest (ROI); Tier 2: Use high resolution imagery for finer look within the ROIs.
- Current 8 day frequency (and 8 day latency) can be improved for fewer days by fusing data from multiple satellite platforms.

Opportunities for wildfire warning system for electrical infrastructure

Customized to show fire risk to electrical infrastructure

- Occurrence of an wildfire event requires three things: i) <u>Availability of the fuel</u>; ii) <u>Weather</u> <u>conditions</u>; iii) Ignition source;
- "Potential risk" of wildfire at any region of interest can be quantified by assessment of ecosystem wildfire regime, fuel characteristic [i], and prevailing weather conditions [ii].
- Overlaid with power grid infrastructure, can offer a wildfire early warning system for critical power grid infrastructure.
- Quantified risk can inform strategy and planning for wildfire mitigation and management. Help prioritize of efforts on the ground to protect critical infrastructures.

Opportunities for wildfire warning system for electrical infrastructure

Modeling Wildfire spread

- Understanding spread of wildfire is critical in a connected ecosystem. For ex.
 - Wildfire may start at a power infrastructure and spread out OR
 - Wildfire started elsewhere may reach a power infrastructure
- Spread of wildfire is driven by weather conditions (highly variable and nondeterministic) and fuels and connectivity (deterministic/quantifiable).
- By assessing fuels on the ground and their potential connectivity can help develop probabilistic fire spread scenarios.
- Model can be used to explore and assess pre-fire mitigation strategies such as controlled/prescribed burns, fire breaks etc.
- Combined with fire risk model can aid monitoring and mitigation planning.
 OAK OAK DAK DISC National Laboratory

Jitendra (Jitu) Kumar Oak Ridge National Laboratory

kumarj@ornl.gov

PlanetSense Program **U.S. DEPARTMENT OF HINE KG** GE OFFICE OF ELECTRICITY

National Laboratory

GridSense

Incorporating Citizen Science in Predictive Modeling of Impacts on Energy Infrastructure

Presented by:

Dr. Gautam Thakur thakurg@ornl.gov | gautamthakur.ornl.gov

Staff Scientist, National Security and Sciences ORNL

April 15, 2021

Smokies Wildfire: A Tragedy of Unparallel Scale

...

GreatSmokyNPS @GreatSmokyNPS

A 0.25 acre wildfire burning near the summit of Chimney Tops has trails closed in that area through Tuesday, November 15th.

3:55 PM · Nov 14, 2016 · Twitter Web Client

GreatSmokyNPS @GreatSmokyNPS

Great Smoky Mountains National Park officials have closed all facilities in the park due to the extensive fire activity, and downed trees.

8:30 AM · Nov 29, 2016 · Twitter Web Client

...

One of the largest natural disasters in Tennessee's History

Tragedy

14 Killed 190 Injured 14,000 Evacuated

Date(s)

November 14, 2016 – December 22, 2016

Cost, Buildings destroyed US\$2 billion in damages 2,460 destroyed

Burned area,

17,900 acres (28 mi²)

The Timeline of Power Outage

28 Nov 2016 (10:20 PM)

Tennessee Valley Authority power transmission lines were lost

28 Nov 2016 (8:20 PM)

widespread losses of power started across Gatlinburg. Sevier County Electric System to kill downtown power

28 Nov 2016 (5-8 PM)

City of Gatlinburg began experiencing intermittent power outages

28 Nov 2016 (AM)

GSMNP maintenance discovered fire spreading

23 Nov 2016

NPS responded to Chimney Top 2 Fire spread in 1.5 acre. WBIR tweeted!

NPS tweeted Chimney Top 1 Fire spread in 0.25 acre

Learning from Crowd Intelligence

Due to fires in the surrounding areas over the past week, the air in Gatlinburg and the Smokies has been filled... fb.me/WkGCPwTv

12:16 PM · Nov 14, 2016 · Facebook

So the mtn fire is now so smokey you can't see the mtns guess that's why it's called the smokies

8:14 PM · Nov 14, 2016 · Twitter for iPhone

East TN pk gusts (until power outages)...Gaitlinbur FD: 63mph (6:17pm). Pigeon Forge CH: 48mph (8:14pm), Sevierville: 57mph (8:44pm) #tnwx

10:41 PM · Nov 28, 2016 · Twitter Web Client

Numerous power outages reported in Sevier cty in #Tennessee due to high winds. Might be problems due to the fires as well #TNwx #Gatlinburg

11:36 PM \cdot Nov 28, 2016 \cdot TweetDeck

Numerous power outages reported in Sevier cty in #Tennessee due to high winds. Might be problems due to the fires as well #TNwx #Gatlinburg

This is a weather station near the Gatlinburg fire, just minutes before it went out. Either melted, or power outage...or both.

Scott Dimmich @ScottDimmich · Nov 28, 2016

This was a (last) reading from a weather station on the east side of Gatlinburg at 8:34pm. Very telling. @lucky13wxman @Hinkmologist

	Gatlinburg, Tn		And Aller
-9	118°	HIGH 118°F	at 8:31 PM
	IIO	LOW 37°F	at 12:47 AM
	Wind	SSW 43 Mph	High Gust 69 Mph at 6:34 PM
-	Humidity	21%	Feels Like 128°F
	Rain	0.00"	Seasonal Total 26.50"
	Barometer	29.41"	Falling Rapidly

9:49 AM · Nov 29, 2016 · Buffer

Today: the Blue Ridge. Saturday: the Smokies

3, 2016 · Twitter Web Client

2,000+ power outages in Sevier county

, 2016 · Twitter for iPad

own on Ravens den way, but Sevierville ting hard to bring power back & are being cleared #wearsvalley 2/3

2016 · Twitter for iPhone

er forward trucks being sent out to help rg and Sevierville Tennessee they're patteries

2016 · Twitter Web App

Power Outage Affected 11,000 Customers

Sevier County Electric System

Fort Loudoun Electric Cooperative

GridSense Architecture

Capability at a Glance

Curate outage, restoration, critical infrastructure, sensor/IoT support, location-based intelligence

Computational social analysis, community and network analysis, vulnerabilities assessment

Few shot learning driven crowd-sourced ground-level imagery analysis for mapping disaster zones, urban analytics, fire, etc.

Semantic Ontology for coherent features from disparate sources or notations

Events and activity detection in near real-time

operationalize non-authoritative information for Energy Security

create an abstraction for DOE and utilities for policy guidance focused on the entire planet

Technical Approach

- Design, develop, and deploy citizen science platform for the collection non-authoritative data
- Develop and deploy models and services that understand and utilizes traditional models
- Develop in-situ calibration and resolution benchmarks for accurate a a quantifiable measure
- Implement multi-sourced data fusion, verification and validation teck crowd-sourced data
- Develop and deploy interactive and real-time feedback-based machin would integrate with sensor data
- Capability Maturity: Used during Smokies wildfire, Puerto Rico outage
 - Full maturity and operational deployment: 24-36 months effort
 - Stand-alone and third-party integration

Dr. Gautam Thakur

<u>thakurg@ornl.gov</u> <u>https://gautamthakur.ornl.gov</u>

Water Extreme Lookup Library David R. Judi, PhD

Background: Tool Develop for Infrastructure Response to Extreme Events

- **Objective:** Develop and apply state of the art infrastructure analytics needed to support infrastructure stakeholder requirements. These analytics are used to characterize:
- Infrastructure system fragility, stability, and resilience
- Infrastructure dependencies on natural systems
- Infrastructure interdependencies
- Economic and community interoperability with infrastructure

WEATHER EXTREMES ARE THE MOST FREQUENT AND SIGNIFICANT CAUSES OF WIDESPREAD INFRASTRUCTURE DISRUPTION

Pacific Northwest NATIONAL LABORATORY

Enhancing Situational Awareness in Extreme Events: Flood Example

- Capability Development is Guided by the EOC/Infrastructure Mission and Relevant Questions:
 - What is the spatial extent of flooding?
 - When will the flood arrive?
 - How long will the flood remain?
 - How many people are at risk?
 - Which infrastructure assets are at risk?
- How Do We Support Flood Events?
 - Predictive modeling and simulation (real-time, near real-time)
 - Imagery-based damage analytics
 - Access and leverage previously simulated events- Go to the WELL!

Oroville Spillway Failure, 2017

Hurricane Harvey Flood Simulation Timeline

What is the WELL?

Water Extreme Lookup Library (WELL) is readilyaccessible archive of flood simulations

The Archive Shall:

- ✓ Be accessible from anywhere
- ✓ Not require software installation
- Have efficient searching (spatial and text query)

Requirements Document

- $\checkmark\,$ Provide geospatial visualization
- ✓ Be responsive to map-based movements
- Be flexible to include multiple flood types
- ✓ Contain simulation metadata
- Provide access to downloadable simulation data
- Be ingestible into other web-based platforms (rest services)
- ✓ Protect information

NATIONAL LABORATORY

ELECTRICITY

Implementation of the WELL

The WELL is currently deployed within the Azure cloud environment and is accessible through a browser or through data APIs

- Searchable (text, visual)
- Interactive
- Downloadable

What's in the WELL?

Flood Types Currently Automated

- CONUS-Wide Dam Failure Simulations
 - National Inventory of Dams (NID)
 - Sunny-day failure events, catastrophic failure
- Riverine Flooding Events
 - National Hydrography Data (NHD)
 - USGS gage locations, historical frequency analysis
- Urban Area Extremes (Pluvial)
 - Urban-area footprints
 - NOAA Atlas 14

Working Towards More Automation

- Hurricanes and Compound Flooding
- Post-Fire Extreme Runoff!?

A Peek Into the WELL

A Peek Into the WELL

Interactive Visual Search for **Available Simulations**

• Filter by type, location (click)

U.S. DEPARTMENT OF **ENERGY**

ELECTRICITY

OFFICE OF

• Search by name

NATIONAL LABORATORY

A Peek Into the WELL

Each individual simulation is readily viewed in a geospatial map using a web browser

All data can be downloaded and ingested into standard geospatial platforms and workflows

View the simulation metadata

Interrogate the extreme event data

Examples of How the WELL is Used

WELL has been used to provide rapid insight into potential flood threats for a variety of events, including US landfalling hurricanes and extreme precipitation. Many of these are related to dam failure events.

The WELL has also been used as a platform for infrastructure operations/management training

Hurricane Maria – Guajataca Dam

'Thousands of people could die': 70,000 in Puerto Rico urged to evacuate with dam in 'imminent' danger

WELL immediately informed the probable area of inundation from a catastrophic dam failure.

The WELL data has been used to assist in the training of infrastructure analysts
Transitioning the WELL to the Open-WELL

- The WELL was developed in support of the federal infrastructure protection mission
- The WELL has broad applicability to federal, state, and local emergency planners and responders
- Current Open-WELL efforts include:
 - Investigating cost-effective approaches for broader cloud-based scaling of the WELL
 - Opening the WELL to ingest third-party simulated data
 - Developing approaches to support 'community-based ensemble' analysis to embrace a multi-model approach to extreme event decision making and response

The WELL architecture and implementation is generally applicable to other types of extreme event data, including wildfire

Team WELL

Mark Jensen Data Scientist

Cindy Rakowski Computational Scientist

Dan Corbiani Data Scientist

Tim Seiple

Computer Scientist

Thank You!

Hotspot Analysis Tool Scalable Spatial Data and Analysis

Dan Corbiani Dan.Corbiani@pnnl.gov

April 15, 2021

Agenda

- What is the Hotspot Analysis Tool?
- Results
- Challenges and Technical Approach
- Implemented Algorithms

NATIONAL LABORATORY

Hotspot Analysis Tool

- Find spatially concentrated industries at risk of disruption from hazards.
- Requirements:
 - Deploy the tool to multiple environments, both connected and disconnected from the internet.
 - Do not create a framework or UI, this tool should be integrated in other places.
 - Simplify the deployment and validation of research code.
- Can't we just use a heatmap?
 - · Heatmaps show concentration based on global information.
 - Hotspot takes spatial information into consideration.
- Example:
 - A small hospital may be very important to a region.

Average Percentile

Textile Mills

Employee Concentration

County Name

Catawba County, North Carolina

<

Cluster Ranking Map

Average Weighted Percentile

Weighted Cluster Ranking Map

		weightedPct	-
Los Angeles County, California	0.07	0.07	4
Gaston County, North Carolina	0.00	0.00	2
Spartanburg County, South Carolina	0.00	0.00	2
Rockingham County, North Carolina	0.00	0.00	1
Anderson County, South Carolina	0.02	0.01	1
Walker County, Georgia	0.02	0.02	1
Cher GOUNTY LISTING	a tor₀v	alidatio	D
Alamance County, North Carolina	0.01	0.01	1
Yadkin County, North Carolina	0.02	0.02	1
Gordon County, Georgia	0.01	0.01	1
Guilford County, North Carolina	0.00	0.01	1
Burke County, North Carolina	0.02	0.01	1
Whitfield County, Georgia	0.01	0.00	1
McDuffie County, Georgia	0.05	0.05	1
Greenville County, South Carolina	0.01	0.01	1
Providence County, Rhode Island	0.05	0.05	

Employee Concentration Map

(most like a heatmap)

Avg-pctPct Avg-

0.01

EMP

,979.00 ,579.00 ,040.00 ,888.00 ,876.00

,502.00 ,420.00 ,403.00 ,341.00 ,150.00 ,069.00 ,063.00

996.00

977.00

>

0.01

Average Percent 0.00 0.17 Average Weighted Percent 0.00 0.17 0.00 0.17 Employees 1.00 4,979.00 ()

Overall Cluster Metrics Based on an average value of other cluster rankings.

Why is this hard?

Geospatial Data Challenges

- · Geospatial datasets are available in many formats / projections.
 - Team members often re-write ETL scripts.
- Datasets are fragmented across services.

Geospatial Library Implementation Challenges

- Algorithms are written against specific datasets or dataframes.
- Documentation for algorithms and methods is often shoddy.
- Explanations are often contained in PowerPoints / papers that rot in relationship to code.
- Few algorithms are designed for scaling.

Hotspot Components

Algorithms U.S. DEPARTMENT OF OFFICE OF ELECTRICITY **Pacific Northwest** NATIONAL LABORATOR

Administrative Boundaries to Constant Size

What does "near" mean?

- Administrative boundaries can have vastly different sizes.
 - Alaska counties vs Manhattan
 - · Causes visual artifacts in maps.
- Makes analysis more complex.
 - What is a neighbor?
 - How do you calculate density?
- Focus heavily on "hashing" polygons and distributing the value to each cell.

H3 Hexagons. Near constant size, distance, and number of neighbors.

Administrative polygons have different numbers of neighbors.

A static distance metric does not work well for administrative boundaries.

Algorithms

- We found two algorithms that worked well
 - DBSCAN and Getis Ord Gi* (Hotspot)
- These had challenges in a distributed environment
 - Building a weight matrix is challenging because of the full join of the dataset.
 - Capturing the data into standard formats without a database backend is complicated.
 - Determining the right epsilon value for DBSCAN is challenging for SMEs.

Clustering Process

Clustering Process

U.S. DEPARTMENT OF

ELECTRICITY

OFFICE OF

Scaling Spatial Algorithms

- Problem:
 - Spatial Clustering Algorithms have not been ported to distributed computing.
- Prior Efforts:
 - Large machine or database holding all data.
- Our solution:
 - Focus on efficiently building a weight matrix.

How do you determine an ideal buffer quickly? Kdtrees or r-trees or h3 aggregation.

Algorithms (Adaptive KNN)

- Problem:
 - Distributed spark systems do not process k-nearest neighbors queries in parallel.
- Solution:
 - Hash each point using h3.
 - Coalesce points in hash until density is reached.
 - Create a "buffer" guess around a set of points based on hash where we believe K-nearest neighbors can be found.
 - Produces a "heat map" and allows us to parallelize the KNN query.
 - Generates a spatially relevant set of connections.

Algorithms (DBSCAN)

- Leverage the Adaptive KNN to find neighbors / distances.
- Create a Spark GraphFrame with the distance as the edges.
 - Use the maximum likely epsilon value.
- Filter the graph based on desired epsilon value.
- Run disconnected components to find clusters.
- Optionally perform graph-based analysis (connectedness, triangle count, etc.)
- Visualize output in kepler.

• DBSCAN is intended to be run multiple time across different epsilon ranges.

Algorithm (DBSCAN Range Finder)

• Problem:

- DBSCAN requires a range (epsilon) for connected components.
- There are permutations to dynamically determine this range (OPTICS, *DBSCAN, etc) but they introduce different complexities.
- Solution:
 - Use KNN distance information to determine a set of interesting epsilon values.
 - Run DBSCAN at values spaced along the determined interval.

Algorithm (Hotspot)

- Extension of Getis Ord Gi *
- Leverages neighboring cells from H3 to find neighborhoods.
- Classification is
 - Neighborhood vs other neighborhoods
 - Point vs other points in the neighborhood
- Can vary the size of the neighborhood as well as the starting resolution.
- All results can be passed into an ensemble algorithm for ranking.

Analysis Architecture

- Goal:
 - Provide structure to develop, test, and deploy algorithms.
- Why is this so hard?
 - Datasets are spread across systems.
 - Projections, formats vary.
 - Libraries are challenging to install
 - Geospatial workflows are easy to describe but challenging to implement / re-use
- Solution:
 - A library similar to pangeo.
 - Detailed instructions on install process.
 - Connections to other libraries when possible, porting when necessary for performance.
 - Full CI / CD pipeline to push the library to sponsors.

Pacific Northwest

Our Team

Development Team:

- Jenny Webster (co-lead)
- Dan Corbiani (co-lead)
- Mark Jensen
- Paige Maxwell
- Kate Miller
- Elise Saxon
- Lucas Tate
- Nile Wynar
- Katie Knobbs (advisor)

Join our Big Geospatial Data Meetup! First Thursday at 1pm est. Dan.Corbiani@pnnl.gov or Jenny.Webster@pnnl.gov

U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY

High/Low Power R&D Arc & Ground-Fault **Detection/Mitigation** Sandia

Dr. Kenneth M. Armijo

Sandia National Laboratories

SAND2021-4288 PE

April, 15th 2021

Thermal Arc/Ground Fault Research

- Arc & Ground Faults in PV & DC Systems Linked to Dozens of PV Fires Around the World.
- Direct Relevance Issue for Power Transmission-Scale Wiring & Forrest Fire Potential.

2015, Hernandez, R.R et al., "Solar energy development impacts on land cover change and protected areas", NAS, 112 (44)

PV in Forested Lands

Future of Distributed PV in Forested Areas

Increasing PV Voltage & Propensity for Fires

Calgary, Canada, 2020.

DC (PV) and AC (Nuclear Energy) High-Energy Arc-Fault (HEAF) events

Photovoltaics (600-1,500VDC)

Bakersfield CA, April 5 2009

"... the ground-fault protection device was unable to interrupt the current, **allowing arc faults to be formed**, spreading sparks to surrounding materials, **causing ignition**."

-- Commercial Roof-Mounted Photovoltaic System Installation Best Practice Review and All Hazard Assessment, The Fire Protection Research Foundation, Feb. 2014

Nuclear Energy (480V, 410V, 6900V and 10kV)-AC

San Onofre Nuclear Generating Station, Feb. 3 2001

"There was a **failure of the main contacts** of a 25 year old 4.16 kV breaker to close fully, **causing a HEAF event**... the **fire persisted for three hours** until water was applied."

-- Brown et al., SAND2008-4820, High energy arcing fault fires in switchgear equipment, a literature review

Experimental Low-Voltage (≤600V) Capabilities Distributed Energy Technologies Lab (DETL)

- Customized PV Simulator provided power to a developed Arc-Fault Generator.
- PV DC & AC Simulators to evaluate varying power system configurations.

150 Ω

oltage

Arc-Fault Characterization/Detection (A) t = 0 s. Visual Video: (F) t = 2.25 s. (K) t = 5.04 s. (P) t = 7.51 s. (U) t = 13.09 s. IR Video: (Z) t = 85.78 s.

Armijo, K.M., Hibbs, M., Johnson, J. and Fresquez, A, "Characterizing fire danger from low power PV arc-faults", 40th PVSC Conference, Denver, CO, 2014.

High-Speed Photography:

Experimental Development for High-Voltage Validation SNL Lightening Simulator Facility

- Experimental testbeds developed for two capabilities:
 - Capacitive discharge system produces a stored energy 1-50 kJ, to support arcs at 1 - 160 kA,
 - 2. RC dump using a ~810 μ F capacitor & ~900 J.
 - 3. Long-duration, arc-triggering constant current source, follow-on supply
- Reproducible 30 s arc tests have been performed with the constant current system

Armijo, K.M et al., "Characterizing fire danger from low power PV arc-faults", 40th PVSC Conference, Denver, CO, 2014.

AC High-Voltage R&D

- 480V, 4160V, 6900V and 10,000V AC tests
- Arcing despite Zero-pt. crossing extinguishment not occurring
- 3-Phase AC tests performed btw SNL, NRC & NIST

SNL Capabilities – Form the Lab to Field Experimental Faults R&D

Completed: 16 Arc-in-a-box tests 27 Equipment Failure tests DTE Solar Park, Lapeer, MI

Paudyal, B., Bolen, M., Short, T. and Woodard, J., 2019, June. Measured dc Arc-flash Risk in a Photovoltaic System. In 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) (pp. 3140-3143). IEEE.

Spectral & Inferred Temperatures from Metal Vapor

Al arc emission

Time is -0.066734 s

U.S. DEPARTMENT OF

ELECTRICITY

OFFICE OF

Winters, C., Cruz-Cabrera, A., Armijo, K.M., "Characterization of DC Arc-Plasmas Generated by High-Voltage Photovoltaic Power Systems," 47th Photovoltaics Specialist Conference (PVSC), Calgary, Canada, 2020.

Arc-Blast Particle Collection & Analysis

Trajectory Data | T008_top | photometrics@sandia.gov

IR Zone of Influence (ZOI) Calcs for Codes & Standards

Winters, C., Cruz-Cabrera, A., Armijo, K.M., "Characterization of DC Arc-Plasmas Generated by High-Voltage Photovoltaic Power Systems," 47th Photovoltaics Specialist Conference (PVSC), Calgary, Canada, 2020.

Dynamic arc restrike measurements

Arc-Fault Circuit Interrupter (AFCI) Development

Wavelet Model work has the potential for providing capabilities for accurate arc-fault detection, which would reduce nuisance tripping issues

Novel Wavelet Model method for arc fault detection algorithm.

FFT

Wavelet Decomposition

McConnell, S., Wang, Z., Balog, R.S. and Johnson, J., 2014, June. Evaluation method for arc fault detection algorithms. In *2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)* (pp. 3201-3206). IEEE.

Self-Extinguishing Materials Research

- Layer by Layer Nano-Composites Self-Extinguishing Materials (Sandia LDRD)
- New R&D field for application across Electricity Transmission/Distribution System.
 Polymer

Clav 16 Uncoated Tabbing Wire 14 60 BL Chitosan VMT 60 QL PEI/PAA/PEI/MMT 12 **Substrate** Spark Gap Length [mm] 9 8 01 6QL PEI/PAA/PEI/MMT Spark Gap Length Δ 2 100W 200W Arc-Fault Power Level

2017 Non-Provisional US Patent, 10,002,983 B1, "Nanocomposite Barrier Films for Photovoltaic Applications", E.D. Spoerke, M.E. Gordon, E. Schindelholz, K.M. Armijo, N.R. Sorensen, A. Martino and J. Grunlan.

Uncoated Tabbing Wire

33

25

49

25

Self-Extinguishing PV Connectors

Self-extinguishing connectors designed to detect / respond to Ohmic heating created from improper installation or corrosion of electrical contacts.

	1 RMS	1.52 A 1.52 A	1.52	-16.0m 0.00	1.52	2.39m 2.37m				15 Nov 2019
		Value	Mean	Min	Max	Std Dev		100 10k	points	0.00 A
D.	1 500		0.12			<u> †</u>		(100	5/6	
2	ileette evendi konstatistisje platete	ah ditaliya kata ya kat	an a		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		initian for the second of the second seco	dia file i differal i		
				ad a concernitional	فليتعد وستعددك					
	A serie a second se	nya karana dala dalam kating jang			مارىيىت روارا بەرىيى		An	lyde yn an trai ac ar s		
								6	49.6 s	20.0mA
									50.0 s	
lek	PreVu	<u>.</u> .			<u></u>	· · · ·	· · · · · · · ·	<u> </u>		

Sandia Arc-Fault Advanced Modelling for Codes & Standards

Energy source region, $P = 4 \times 10^8 \text{ W/m}^3$ (approximately 100 V, 10 A Arc)

Ground Fault Research & Development

- Exposed unintentional non-current carrying metals/conducting parts of PV systems connected through conducting wire to reference ground.
- Fuse-based GFDI (Ground Fault Detector/Interrupter) designs vulnerable to faults to the grounded current-carrying conductor.

Blind spot in a listed inverter's fuse-based groundfault protection scheme which resulted in a fire.

Ground Fault Sandia Research & Development

- Fuse-based GFDI (Ground Fault Detector/Interrupter) designs vulnerable to faults to grounded current-carrying conductor.
- SPICE simulations & field measurements to determine thresholds for Residual Current Detectors (RCDs), isolation resistance periodic checkers (Riso), and Current Sense Relays (CSRs).

U.S. DEPARTMENT OF

OFFICE OF

lercy

FCTRICIT

kmarmij@sandia.gov

U.S. DEPARTMENT OF

OFFICE OF

Questions? Contact our Speakers:

Feng Qiu

Argonne National Laboratory

fqiu@anl.gov

Jitu Kumar

Oak Ridge National Laboratory kumarj@ornl.gov

Daniel Corbiani

Pacific Northwest National Laboratory

daniel.corbiani@pnnl.gov

Brett Hansard

Argonne National Laboratory bhansard@anl.gov

Aaron Myers

Oak Ridge National Laboratory

myersat@ornl.gov

Gautum Thakur

Oak Ridge National Laboratory <u>thakurg@ornl.gov</u>

Ken Armijo Sandia National Laboratories kmarmij@sandia.gov

David Judi

Pacific Northwest National Laboratory

david.judi@pnnl.gov

Stewart Cedres

Office of Electricity

stewart.cedres@hq.doe.gov

Thank You

Our Next Webinar:

Modeling & Analytical Tools

April 22, 2-4 PM ET

https://www.energy.gov/oe/wildfire-mitigation-webinar-series