

Solar Critical Infrastructure Energization (SOLACE) System

Dr. Arindam Maitra Senior Technical Executive

Dr. Brian Seal Senior Program Manager

Electric Power Research Institute (EPRI)

DOE Resilience Workshop Virtual Meeting April 8th, 2021

SOLAr Critical infras Energization System (SOLACE)

Viability planning Advanced Secure local Resilient grid controls methods communication local power

- **Pre-Event Planning methods**: Enable utilities to assess their T&D system to determine if and where existing DER and grid can be utilized for resilient local operation during time of crisis.
- **Controls & Operations:** Utilize centralized DMS functions to isolate and operate the local grids.
- **Technology Advancement:** Grid forming DER development, advanced load management, cyber-secure systems

Work with the existing grid, not replace it. Utilize existing DER to provide resilience service to critical customers. Changes lie in where the control and monitoring layers are

Resilience Planning Methodology – PERPA

Harmonics

Grounding

Criteria for Normal Operation

Voltage Imbalance < 3%

Step 0 - Determine Operational and Planning Criteria

• High-Level Operational Limits and Criteria for Different Analyses

Analysis to Identify Pathways

Step 2 - Potential Pathways Identification

- Identification of potential paths
- Initial characterization of potential paths

Step 4 - Pathway Dynamics Analysis (EMT)

- Protection Analyses
- Black-Start and Motor Start
- · Generation, Large Load and Capacitor Switching

TOV assuming that... ... Step 1 - Critical Facility and DER Ident. and

- · Identification and Characterization of Crit. Facilities and DER
- Combinations and filtering of Crit. Facilities and DERs

Reference Standards

ANSI C84.1

IEEE Std 519-1992

IEEE/ANSI C62.92

Characterization

- Preliminary Power and Energy Adequacy Assessment
- Estimation of extra resources needed (if necessary)

Analysis of Each Identified Pathways

-8.3% to 4+5.8%)

Step 3 - Pathway Steady-State Analysis

Recommended Criteria for use in PERPA

Might utilize range B (Service Voltage

Can be relaxed up to the Dx arrested

Can be relaxed within reason

- Power-Flow
- Thermal
- Reactive Power Supply
- Voltage and Load Balance
- Etc

Outage Duration (hours)

Step 5 - Final Viable Plan Creation

- Creation of Pathways Ranking Matrix
- Solution Paths Characterization for Go-Time Activation

Path Name	Load Coverage Probability	Total Length	Total Sequence Impedance	# of Devices to be Adjust.	Cost (\$)	Path Ranking Position
1						
2						
3						

Potential Pathways Connecting Critical Load to Resources

Microgrid Interconnection Analysis Process

Resiliency Planning Methodology – PERPA

GFM Inverter Control and Hardware Development

Grid Following Inverter (GFL)

- Current source (Current control)
- PLL is required to estimate grid phase angle and voltage magnitude
- No black start capability (anti islanding protection)
- Without frequency support
- Fast response to the intermittent irradiation levels (no buffer)

Proposed GFM Architecture: DC Coupled PV Synchronous Generator (PVSG)

- Connect an energy buffer at the DC side (hardware change)
- Change the PV inverter controller for GFM
- System acts like a synchronous generator
- Based on UT Austin PVSG Design
- Based on Solectria XGI-1500
- Upgraded control from GFL to GFM

- Voltage source (can serve as PV bus or PQ bus)
- Operates like a synchronous generator
- Has its own voltage & frequency (Swing bus)
- No PLL required
- · Black start capability
- Inertia support and primary frequency response

Thank You

