Value of SEPA Hydropower

ALABAMA MUNICIPAL ELECTRIC AUTHORITY

AMEA General Information

- Municipal Joint Action Agency
- Formed as a Public Corporation in August 1981
- Eleven Full Requirements Members
- 350,000 + Member Retail Customers
- AMEA Acts as Agent for our Member's SEPA

SEPA in the Wholesale Market

- AMEA's Member's pay SEPA monthly for Capacity and Energy
- AMEA's Member's SEPA Energy is scheduled by Southern Company Services for the benefit of the entire Southern System
- AMEA is credited hourly for our pro-rata share of the Southern Company SEPA schedule at the hourly market price
- We pass the credit through to our members

Hourly Wholesale Market Prices – Winter Day

Hourly Wholesale Market Prices – Summer Day

SEPA - Peak vs Off Peak

	Chart Above	Chart Below
Hours in Schedule	9	6
MW	100	150
SEPA Delivered MWh	900	900
SEPA Costs (\$/MWh)	\$12.00	\$12.00
Market Price (\$/MWh)	\$20.00	\$40.00
Savings per MWh	\$8.00	\$28.00
SEPA Savings vs Market	\$ 7,200	\$ 25,200

 The difference in AMEA's cost on this day would be \$18,000
depending on how SEPA was scheduled

SEPA Capacity

Assumptions			
SEPA Energy Costs \$/MWh	\$	15.00	
Weekly Hours Scheduled		20	
Total SEPA Capacity Factor		20%	
Alternate Product Gas Price \$/mmBTU		\$3.00	

 Capacity more expensive than typical peaking capacity in southeast US
Savings must be made on energy

	SEPA Costs	Alternative Energy	SEPA Savings (Costs) to
Capacity Costs	\$ 8,454,815	\$ 5,167,980	(\$3,286,835)
Peaking (Schedule) Energy Costs	\$ 2,687,350	\$ 6,449,639	\$3,762,289
Baseload (Must Run) Energy Costs	\$ 1,839,801	\$ 2,575,721	\$735,920
Grand Total	\$12,981,966	\$14,193,340	\$1,211,375

Amount Scheduled

Assumptions			
SEPA Energy Costs \$/MWh	\$	15.00	
Weekly Hours Scheduled		10	
Total SEPA Capacity Factor		20%	
Alternate Product Gas Price \$/mmBTU		\$3.00	

If Customers can only schedule
10 hours a week (instead of 20);
value of SEPA decrease

		Alternative	SEPA Savings
	SEPA Costs	Energy	(Costs) to
		Purchase	Customer
Capacity Costs	\$ 8,454,815	\$ 5,167,980	(\$3,286,835)
Peaking (Schedule) Energy Costs	\$ 1,343,675	\$ 3,224,820	\$1,881,145
Baseload (Must Run) Energy Costs	\$ 3,183,476	\$ 4,456,866	\$1,273,390
Grand Total	\$12,981,966	\$12,849,665	(\$132,300)

Insufficient Water

Assumptions			
SEPA Energy Costs \$/MWh	\$	20.00	
Weekly Hours Scheduled		20	
Total SEPA Capacity Factor		20%	
Alternate Product Gas Price \$/mmBTU		\$3.00	

 When there is insufficient water available, SEPA purchases
"Replacement Energy" from market,

which causes energy cost to go up

 Could eventually cause Customers to purchase additional capacity

		Alternative	SEPA Savings
	SEPA Costs	Energy	(Costs) to
		Purchase	Customer
Capacity Costs	\$ 8,454,815	\$ 5,167,980	(\$3,286,835)
Peaking (Schedule) Energy Costs	\$ 3,583,133	\$ 6,449,639	\$2,866,506
Baseload (Must Run) Energy Costs	\$ 2,453,068	\$ 2,575,721	\$122,653
Grand Total	\$14,491,016	\$14,193,340	(\$297,676)

Competing priorities - Control Over Water/Energy

Because capacity is more expensive
SEPA must save money in energy
market to be economical (Shows
actual energy savings in market)

ACTUAL DISPATCH

Fiscal Year	AMEA SEPA Capacity (MW)	Additional SEPA Capacity Cost (vs Alternative)	Actual SEPA Energy Savings (vs market)	Net SEPA Benefit (Costs)
2016	151	\$3,286,835	\$3,133,158	(\$153,677)
2017	151	\$3,286,835	\$2,471,761	(\$815,074)
2018	151	\$3,286,835	\$4,589,573	\$1,302,737
2019	151	\$3,286,835	\$6,087,143	\$2,800,308
2020	166	\$3,286,835	\$2,837,716	(\$449,119)

OPTIMAL DISPATCH shows historical look on what the Customer would save if they could schedule all SEPA energy (i.e. no "Must Run")

OPTIMAL DISPATCH

Fiscal Year	AMEA SEPA Capacity (MW)	Additional SEPA Capacity Cost (vs Alternative)	OPTIMAL SEPA Energy Savings (vs market)	Net SEPA Benefit (Costs)
2016	151	\$3,286,835	\$ 4,376,193	\$1,089,357
2017	151	\$3,286,835	\$3,552,654	\$265,818
2018	151	\$3,286,835	\$7,222,125	\$3,935,290
2019	151	\$3,286,835	\$7,622,137	\$4,335,302
2020	166	\$3,286,835	\$3,942,355	\$655,519

Ideal SEPA Dispatch for Summer Peak Load

Advantages of SEPA

- If natural gas and/or power prices go up it will benefit SEPA's economics
- Renewable standards and carbon regulation could add benefits for hydropower
- Flexibility of hydropower will become increasingly more important in the future with more renewables (on site fuel, ancillary services)

Takeaways

- AMEA and its members benefit greatly from SEPA hydropower in the current market
- The more water available to the Customers to schedule, the greater the benefit
- Replacement energy hurts Customers through higher cost energy purchases and could potentially cause Customers to purchase additional capacity making the cost of SEPA power uneconomical

BACKUP SLIDES

SEPA Cost Analysis Assumptions

- Peaking capacity price of \$2.50kw/mo
- \$3.00/mmBTU Natural Gas Price
- "Must Run" SEPA Energy would be purchased from 7,000 mmbtu/kWh Heat Rate Combined Cycle
- "Scheduled" SEPA Energy would be purchased from 12,000 mmbtu/kWh Heat Rate Gas Peaker

S	FPΔ		
SEPA Capacity	MW		172
SEPA Actual CF	%		20%
SEPA Schedu	ed Energy +	Capa	city
Capacity Costs	\$/kw - Mo		\$4.09
Energy Costs	\$/MWh	\$	15.00
Annual CF	%		12%
Annual Capacity Costs	\$	\$	8,454,815
Annual Energy Costs	\$	\$	2,687,350
SEPA M	ust Run Ene	rgy	
Energy Costs	\$/MWh	\$	15.00
Annual CF	%		8%
Annual Energy Costs	\$	\$	1,839,801
Total Annual Costs		\$1	2,981,966

Alternative				
	mat		L	
Gas Peakin	g Energy + Ca	apacit	ÿ	
Gas Price	\$/mmBTU		\$3.00	
Heat Rate	btu/KWh		12,000	
Peaking Capacity Costs	\$/kw - Mo	\$	2.50	
Energy Costs	\$/MWh	\$	36.00	
Annual CF	%		12%	
Annual Capacity Costs	\$	\$	5,167,980	
Annual Energy Costs	\$	\$	6,449,639	
Combine Cyc	le (Baseload) Ene	rgy	
Gas Price	\$/mmBTU		\$3.00	
Heatrate	btu/KWh		7,000	
Energy Costs	\$/MWh	\$	21.00	
Annual CF	%		8%	
Annual Energy Costs	\$	\$	2,575,721	
Total Annual Costs		\$1	4,193,340	

SEPA is \$1.21M Cheaper Annually

S	EPA		
SEPA Capacity	MW		172
SEPA Actual CF	%		20%
SEPA Schedu	led Energy +	Capac	ity
Capacity Costs	\$/kw - Mo		\$4.09
Energy Costs	\$/MWh	\$	15.00
Annual CF	%		6%
	1		
Annual Capacity Costs	\$	\$	8,454,815
Annual Energy Costs	\$	\$	1,343,675
SEPA M	lust Run Ene	rgy	
Energy Costs	\$/MWh	\$	15.00
Annual CF	%		14%
Annual Energy Costs	\$	\$	3,183,476
	1		
Total Annual Costs		\$1	2,981,966

Alternative

Gas Peakin	g Energy + Ca	apaci	ty
Gas Price	\$/mmBTU		\$3.00
Heat Rate	btu/KWh		12,000
Peaking Capacity Costs	\$/kw - Mo	\$	2.50
Energy Costs	\$/MWh	\$	36.00
Annual CF	%		6%
Annual Capacity Costs	\$	\$	5,167,980
Annual Energy Costs	\$	\$	3,224,820
Combine Cyc	le (Baseload) Ene	ergy
Gas Price	\$/mmBTU		\$3.00
Heatrate	btu/KWh		7,000
Energy Costs	\$/MWh	\$	21.00
Annual CF	%		14%
Annual Energy Costs	\$	\$	4,456,866
Total Annual Costs		\$:	12,849,665

SEPA is \$0.13M More Expensive Annually

SEPA						
SEPA Capacity	MW		172			
SEPA Actual CF	%		20%			
SEPA Scheduled Energy + Capacity						
Capacity Costs	\$/kw - Mo		\$4.09			
Energy Costs	\$/MWh	\$	20.00			
Annual CF	%		12%			
Annual Capacity Costs	\$	\$	8,454,815			
Annual Energy Costs	\$	\$	3,583,133			
SEDA N	lust Pup Eno	· · · · · · · · · · · · · · · · · · ·				
JEFA IV		BY				
Energy Costs	\$/MWh	\$	20.00			
Annual CF	%		8%			
Annual Energy Costs	\$	\$	2,453,068			
Total Annual Costs		\$ 14	4,491,016			

Alternative

Gas Peaking	g Energy + Ca	apacity
Gas Price	\$/mmBTU	\$3.00
Heat Rate	btu/KWh	12,000
Peaking Capacity Costs	\$/kw - Mo	\$ 2.50
Energy Costs	\$/MWh	\$ 36.00
Annual CF	%	12%
Annual Capacity Costs	\$	\$ 5,167,980
Annual Energy Costs	\$	\$ 6,449,639
Combine Cyc	le (Baseload) Energy
Gas Price	\$/mmBTU	\$3.00
Heatrate	btu/KWh	7,000
Energy Costs	\$/MWh	\$ 21.00
Annual CF	%	8%
Annual Energy Costs	\$	\$ 2,575,721
Total Annual Costs		\$ 14,193,340

SEPA is \$0.30M More Expensive Annually