

Unlocking Solar Thermochemical Potential: Receivers, Reactors, and Heat Exchangers

US DOE SETO - Webinar-workshop

Thursday, Dec. 3rd 2020

Jonathan Scheffe – Renewable Energy Conversion Lab

Questions that will be Addressed

- How do thermodynamics and kinetics contribute to solar thermochemical performance, or efficiency?
- What are the key challenges related to measuring thermodynamic and kinetic properties of thermochemical materials?
- What are overlooked chemistry-based technical metrics/objectives that should be considered at both early and late stages?

Heating Solid

$$\delta \rm{H_2}$$

 $=\frac{\delta HHV_{\rm H_2}}{}$

$$=\frac{1}{Q_{\text{solar}}+E_{\text{penalty}}}$$

 $\eta_{ ext{solar-to-H}_2}$

$$\delta/20_2$$

 $\delta \mathrm{H_2O}$

Large for T_{swing} cycle, $T_{\text{H}} > T_{\text{L}}$

Heating Solid Reactants

$$= \int_{T_{\rm I}}^{T_{\rm H}} c_{\rm p,ox} dT$$

+

Endothermic Reduction

=
$$\Delta h_{\rm red} \delta$$

+

Large for **isothermal** cycle, $T_H = T_L$

Heating Fluid Reactants

$$= \left. \dot{n}_{\mathrm{H}_2\mathrm{O}} \, \Delta h_{\mathrm{H}_2\mathrm{O}} \right|_{298K \to T_{\mathrm{L}}}$$

 $Q_{\rm in}$ = $Q_{\rm solar} \eta_{\rm ab}$

- This will tell you if it is worth investigating materials to begin with
- Properties can be measured a variety if ways if data not available
- Variations in the oxidation pO₂ can result in substantial differences in fuel production and affect efficiency

$$H_2O \square H_2 + 0.5O_2$$

$$\frac{pO_2}{p^{\circ}} = \left[K_{w} \left(T \right) \frac{pH_2O}{pH_2} \right]^2$$

Data Digitized From: Panlener, R.; Blumenthal, R.; Garnier, J. *Journal of Physics and Chemistry of Solids* **1975**, 36, (11), 1213-1222.

- This will tell you if it is worth investigating materials to begin with
- Properties can be measured a variety if ways if data not available
- Variations in the oxidation pO₂ can result in substantial differences in fuel production and affect efficiency

$$H_2O \square H_2 + 0.5O_2$$

$$\frac{pO_2}{p^{\circ}} = \left[K_{w} \left(T \right) \frac{pH_2O}{pH_2} \right]^2$$

Data Digitized From: Panlener, R.; Blumenthal, R.; Garnier, J. *Journal of Physics and Chemistry of Solids* **1975**, 36, (11), 1213-1222.

- This will tell you if it is worth investigating materials to begin with
- Properties can be measured a variety if ways if data not available
- Variations in the oxidation pO_2 can result in substantial differences in fuel production and affect efficiency

$$H_2O \square H_2 + 0.5O_2$$

$$\frac{pO_2}{p^{\circ}} = \left[K_{w} \left(T \right) \frac{pH_2O}{pH_2} \right]^2$$

Data Digitized From: Panlener, R.; Blumenthal, R.; Garnier, J. *Journal of Physics and Chemistry of Solids* **1975**, 36, (11), 1213-1222.

- This will tell you if it is worth investigating materials to begin with
- Properties can be measured a variety if ways if data not available
- Variations in the oxidation pO₂ can result in substantial differences in fuel production and affect efficiency

$$H_2O \square H_2 + 0.5O_2$$

$$\frac{pO_2}{p^{\circ}} = \left[K_{w} \left(T \right) \frac{pH_2O}{pH_2} \right]^2$$

$\uparrow \Delta s$, $\downarrow \Delta h$ Most Favorable

- $Arr \Delta T_{cycle}$ and T_{red} are driven by Δs and Δh of redox material
- Current SOA material, CeO_{2-δ}, is shown to the right is used to demonstrate

$\uparrow \Delta s$, $\downarrow \Delta h$ Most Favorable

- $Arr \Delta T_{cycle}$ and T_{red} are driven by Δs and Δh of redox material
- Current SOA material, CeO_{2-δ}, is shown to the right is used to demonstrate
- Decreasing Δh and increasing Δs result in lower $T_{\rm red}$ and $\Delta T_{\rm cycle}$ see dashed lines

Measuring Kinetics and Thermodynamics

- It is always important to know your p_{02} and T, but usually p_{02} is not
 - Can be controlled by varying H_2O/H_2 in system and measuring changes in concentrations due to reduction and oxidation
 - Usually not controlled during oxidation
 - Efficiency cannot be predicted without measurements under controlled p_{02}

- Kinetics that are modeled should be calculated from reaction rates that are free from:
 - Mass transfer limitations
 - Heat transfer limitations
 - Dispersion and detector lag
 - Large particle size distributions as much as possible
 - Morphological changes
 - Impacted by reverse reaction (K>>1/1)

Controlled H₂O/H₂ HTWSR

T 293-1873 K p_{tot} 0.2 mbar-1.01325 bar $f(T, p H_2, p H_2O)$

Exemplary Experimental Results

Measured δ Validate the Approach

 Measurements were compared to Panlener et al. [1] and Tuller and Nowick [2]

T	1173-1473 K
p_{tot}	1 atm
$p O_2$	$4.54 \times 10^{-18} - 1.02 \times 10^{-9}$ atm

Carrillo, Richard J., Kent J. Warren, and Jonathan R. Scheffe. *Journal of Solar Energy Engineering* 141.2 (2019).

A Good Model Can Serve as a Guide

Correction for gas dispersion

Carrillo, Richard J., Kent J. Warren, and Jonathan R. Scheffe. *Journal of Solar Energy Engineering* 141.2 (2019).

Extrapolation to different conditions

Here, initial reduction extent is greaten4

Exemplary Batch Type Reactor

- Marxer et al. has demonstrated highest efficiency to date of 5.3 % using ceria
- 63% of losses due to heating
- Entropy change is dominating factor for temperature swing cycles
- Large pores enhance radiative heat transfer.
 Usually this is rate limiting during reduction.
- Kinetics usually rate limiting during oxidation with H₂O or CO₂.
- Stability should be demonstrated at this scale because of the extreme thermal gradients.

Marxer, Daniel, et al. "Solar thermochemical splitting of CO 2 into separate streams of CO and O 2 with high selectivity, stability, conversion, and efficiency." *Energy & Environmental Science* 10.5 (2017): 1142-1149.

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE