Georgia Tech

CREATING THE NEXT

Solar thermochemical reactor design space

overview

Peter G. Loutzenhiser Solar Fuels and Technology Laboratory Woodruff School of Mechanical Engineering

Unlocking Solar Thermochemical Potential: Receivers, Reactors, and Heat Exchangers Workshop December 3, 2020

Solar thermochemical reactors

Concentrating solar irradiation infrastructure

Trough Solar concentrations of < 100 suns

Tower Solar concentrations of 500 – 2500 suns with secondary

Dish Solar concentrations of 5000 – 10,000 suns

Georgia Tech

Steinfeld and Meier, Encyclopedia of Energy 2004, 623-637

Maximum work potential extraction

CREATING THE NEXT

Design considerations

- Scale required for the applications
 - Solar thermochemical storage for electricity productions needs to be scaled for integration with power block
 - Fuels production and materials processing varies between modular units and/or large scale production but necessitates storage
- Temperatures required for different applications
 - Windowed reactors allow for direct exposure to solar concentrated irradiation with losses due transmission and limited scales
 - Indirect reactors heat an absorber plate composed of resilient, highly conductive materials that conducts heat to reactants mitigate depositions with irreversibilities (temperature drops due to heat transfer)
 - Resilient reactor materials required for high temperatures
- Optimizing absorption of concentrated solar irradiation
 - Spectral selectivity for low temperatures
 - Cavity reactors for high temperatures
 - Optimized reactant geometries to ensure deep penetration of solar irradiation (e.g., reticulate porous structures, etc.)

6

CO₂/H₂O splitting based on ZnO/Zn redox reactions

- Ultra high-temperatures necessitated a window and inert environment
- Zn(g) produced requires a quench process
- Goal to maximize Zn production for subsequent H₂ and/or CO production

Solar thermochemical storage based on $CaAl_{0.2}Mn_{0.8}O_{3-\delta}$ redox reactions

- Higher temperatures, continuous flows, and heat and mass transfer limitations required window
- A roughened incline slope controlled residence and distributed concentrated irradiation over a thin particle flow

Solar gasification

- Semi-batch mode with gaseous products exiting the top facilitated an solar gasifier and associated chemical kinetics
- Inert bed mixed with activated carbon and H₂O in a SiC tube for gasification at 900 °C for indirect heating

Summary and conclusions

- Solar thermochemical reactor design must coupled to detailed knowledge of the reaction chemistry
- Different chemical reactions will inherently lead to different solar thermochemical reactor designs, including direct (with window) or indirect (absorber plates) with different scaling obstacles and losses

How does the future look?

11 Georgia

Acknowledgements

- Funding from the Solar Energy Technologies Office: DE-EE0008372 with project oversight provided by Drs. Matthew Bauer and Andru Prescod (SETO)
- Funding: U.S. Department of Energy SunSHOT initiative under Award No. DE-FOA-0000805-1541 (PROMOTES project in ELEMENTS) with project oversight from Levi Irwin (SETO)
- National Science Foundation Graduate Research Fellowship under Grant No. DGE-1148903
- Funding from the Swiss National Science Foundation, Swiss Office of Energy and the Baugarten Foundation
- Collaborators at Georgia Tech, Arizona State University, ETH Zurich, King Saud University, Paul Scherrer Institute, and Sandia National Laboratories

Georgia Tech

12