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Considerations to inform 
thermochemical reactor design 
factoring in the chemistry 
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Concentrating solar irradiation 
infrastructure

Dish
Solar concentrations of 

5000 – 10,000 suns

Tower
Solar concentrations 
of 500 – 2500 suns

with secondary

Trough
Solar concentrations 

of < 100 suns 

Steinfeld and Meier, 
Encyclopedia of Energy
2004, 623-637
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Maximum work potential extraction

ηexergy

C 1000 suns 5000 suns 10000 

suns

Tstagnation 2049 K 3064 K 3644 K

Toptimum 1106 K 1507 K 1724 K
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• Scale required for the applications
o Solar thermochemical storage for electricity productions needs to be scaled 

for integration with power block
o Fuels production and materials processing varies between modular units 

and/or large scale production but necessitates storage

• Temperatures required for different applications
o Windowed reactors allow for direct exposure to solar concentrated 

irradiation with losses due transmission and limited scales 
o Indirect reactors heat an absorber plate composed of resilient, highly 

conductive materials that conducts heat to reactants mitigate depositions 
with irreversibilities (temperature drops due to heat transfer)

o Resilient reactor materials required for high temperatures

• Optimizing absorption of concentrated solar irradiation
o Spectral selectivity for low temperatures
o Cavity reactors for high temperatures
o Optimized reactant geometries to ensure deep penetration of solar 

irradiation (e.g., reticulate  porous structures, etc.) 6

Design considerations



• Ultra high-temperatures necessitated a window and inert 
environment

• Zn(g) produced requires a quench process

• Goal to maximize Zn production for subsequent H2 and/or CO 
production
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CO2/H2O splitting based on ZnO/Zn 
redox reactions

Zn ZnO

O2

CO2/H2O CO/H2

~1700 °C 

Loutzenhiser, et al. JOM 63 
(2011) 32 - 34



• Higher temperatures, continuous flows, and heat and mass 
transfer limitations required window

• A roughened incline slope controlled residence and distributed 
concentrated irradiation over a thin particle flow
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Solar thermochemical storage based on 
CaAl0.2Mn0.8O3-δ redox reactions

Solar thermochemical reactor (a) 
schematic, (b) cavity, and (c) assembled

~1000 °C 



• Semi-batch mode with gaseous products exiting the top 
facilitated an solar gasifier and associated chemical kinetics

• Inert bed mixed with activated carbon and H2O in a SiC tube for 
gasification at 900 °C for indirect heating
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Solar gasification



• Solar thermochemical reactor design must coupled to detailed 
knowledge of the reaction chemistry

• Different chemical reactions will inherently lead to different solar 
thermochemical reactor designs, including direct (with window) 
or indirect (absorber plates) with different scaling obstacles and 
losses
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Summary and conclusions



Outlook
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How does the future look?
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